
The Stepping-stone Problem

N stepping-stones are arranged in a circle and are numbered 0 to N – 1. The rules of the game are 
that starting on stone number 0, you are allowed to move clockwise by a steps in each move. The 
question is first – is it possible to arrive at stone number R? and if so, how many moves n will it 
take?

The easy bit 

For example: if there are 12 stones and you are allowed to move 5 steps each time, how long will 
it take you to reach stone number 4? The sequence goes like this:

0 > 5 > 10 > 3 > 8 > 1 > 6 > 11 > 4

We arrive at stone number 4 after 8 moves. If you continue the sequence you will find that you 
visit all the stones exactly once before returning to stone number 0.

We can illustrate this in the following way:

But this is not always the case. If we are allowed to move by 3 steps each time, it is easy to see 
that we will never reach stone number 4 because the sequence this time goes like this:

0 > 3 > 6 > 9 > 0 > 3 . . .

and it is immediately obvious why. It is because 12 (the number of stones) is divisible by 3 and 
therefore always repeats after 12 / 3 = 4 moves. 

If we are allowed to move by 8 steps the sequence is:

0 > 8 > 4 > 0 > 8 . . .

and the sequence has length 3.
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Why is this? The answer is that, although 12 is not divisible by 8, the two numbers have a 
common factor of 4 and it is this that determines the length of the sequence. It immediately follows 
that if the two numbers have no common factor, the length of the sequence will be equal to the 
number of stones ie – all the stones will be visited exactly once.

We can now answer the question of whether any particular stone will be visited in a simple way. 
The stone R will be visited if and only if R is divisible by the highest common factor of N and a.

ie if

R ÷ N∣a

In N is prime, then, obviously, all values of a (not equal to N) will result in all stones being 
visited once before returning to the starting point. e.g if n = 7 and a = 5 we have:

The hard bit

OK – so we know whether or not a solution is possible; how do we find out how many moves it 
is going to take?

What we are asking for is the number of a's which equal a whole number of N's plus R. ie we are 
looking for a solution to the Diophantine equation:

a x = N y  R

where x and y are, of course, integers.

Now, unlike ordinary linear equations, there is no analytical method of solving this problem (ie 
there is no formula for x in therms of N, a and R) and the easiest way is simply to go on adding a 
repeatedly, subtracting N whenever you can until you reach the desired number R. This is a trivial 
task on a computer:

Function Diophantine(N, a, R)
Dim s as integer = 0
For i as integer = 1 to N

s += a
if s > N then s -= N
if s = R then return i

next
return 0

We know that, if a solution is possible, it must occur in the first N moves so if no solution is 
found, the For ... next loop terminates and the function returns 0.

There are techniques involving modular arithmetic for simplifying the problem if N and/or a are 
very large because we can replace the equation with a congruence:
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a x ≡N R

which reads: 'ax is congruent to R modulo N' and basically says that ax leaves a remainder of R 
when divided by N.

Now since we are only interested in the remainder, we can add (or subtract) N from the right 
hand side as many times as we want without upsetting the congruence. If we find a number that is 
divisible by a we are home and dry! eg suppose that N = 51 and a = 10 and we want to know how 
many moves it will take to reach the 37th stone; the Diophantine equation is:

10 x = 51 y  37

and its solution is not obvious.

Rewriting it as a congruence we obtain:

10 x ≡51 37

Now the idea is to add 51 to the right hand side as many times as necessary to make the number 
divisible by 10. Obviously we must add 3 more 51's making

10 x ≡51 190

Now an important theorem in modular arithmetic says that, providing the modulus does not share 
a factor with the number you are dividing by, you can divide both sides of a congruence as if it was 
an equality. So in this case we can divide through by 10 obtaining:

x ≡51 19

giving us the simplest answer x = 19.

(Even if the modulus shares some factors with the divisor you can still divide through provide 
you divide the modulus by the shared factors too.)

Another technique is to solve for y first rather than x.

The same equation can also be written as:

51 y = 10 x − 37

i.e. 51 y ≡10 −37 ≡10 3

This time we see that we must add 15 10's to the 3 on the right hand side to make a multiple of 51 
giving us the answer y = 3 which, of course gives us x = 19 by substituting back into the original 
equation.
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The Multiplicative Stepping-stone Problem

Suppose that instead of starting on stone 0 and adding a each move, you start on stone 1 and 
multiply by a. Let us take N =- 12 and investigate the sequences obtained for different values of a:

a = 1 1 > 1 >  [1 >] . . .
a = 2 1 > 2 > 4 > 8 > [4 > 8 >] . . .
a = 3 1 > 3 > 9 > [3 > 9 >] . . .
a = 4 1 > 4 > [4 >] . . .
a = 5 1 > 5 > [1 > 5 >] . . .
a = 6 1 > 6 > 0 > [0 >] . . .
a = 7 1 > 7 > [1 > 7 >] . . .
a = 8 1 > 8 > 4 > 0 > [0 >] . . .
a = 9 1 > 9 > [9 >] . . .
a = 10 1 > 10 > 4 > [4 >] . . .
a = 11 1 > 11 > [1 > 11 >] . . .

It would appear from this that the sequence very quickly enters a short repeating pattern.

What happens if we start from a different stone, eg 2?

a = 1 2 > 2 >  [2 >] . . .
a = 2 2 > 4 > 8 > [4 > 8 >] . . .
a = 3 2 > 6 > 0 > [0 >] . . .
a = 4 2 > 8 > [0 >] . . .
a = 5 2 > 10 > 8 > 4 > [8 > 4 >] . . .
a = 6 2 > 0 > [0 >] . . .
a = 7 2 > 2 > [2 >] . . .
a = 8 2 > 4 >  0 > [0 >] . . .
a = 9 2 > 6 > [6 >] . . .
a = 10 2 > 8 > [8 >] . . .
a = 11 2 > 10 > [2 > 10 >] . . .

Some of the sequences are the same, some different but all are, as before, rather short. But 
perhaps this is because the number 12 has many factors. Let us try with a prime number eg 7:

a = 1 1 > 1 >  [1 >] . . .
a = 2 1 > 2 > 4 > [1 > 2 > 4 >] . . .
a = 3 1 > 3 > 2 > 6 > 4 > 5 > [1 > 3 > 2 > 6 > 4 > 5 >] . . .
a = 4 1 > 4 > [1 > 4 >] . . .
a = 5 1 > 5 > 4 > 6 > 2 > 3 > [1 > 5 > 4 > 6 > 2 > 3 >] . . .
a = 6 1 > 6 > [1 > 6 >] . . .

Again, most of the repeating cycles are quite short but the cases of a = 3 and a = 5 are interesting 
because they visit all of the stones (with the exception of stone number 0 of course.)
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Now we can write this problem as a Diophantine equation as follows:

a x = N yR

or alternatively a x
≡N R

(You might object that in calculating the sequence we have repeatedly taken the modulus before 
multiplying by the next number whereas the congruence above implies that we take the modulus 
after doing all the multiplications. Do not worry. The modulus of (S – kN) × a is obviously equal to 
the modulus of S × a because the modulus of kN is zero.)

Suppose we wish to solve this congruence for the case a = 3, N = 7 and R = 4. Using the same 
technique as before, we keep adding N to the right hand side and each time we reach a multiple of a, 
we can divide through to simplify things. e.g.:

3x
≡7 4 ≡7 11 ≡7 18

Dividing by 9 3x−2
≡7 2 ≡7 9

Dividing by 9 again 3x−4
≡7 1

Now the simplest solution to this equation is if (x – 4 ) equals 0 i.e. x = 4 which is the answer we 
seek.

Let us investigate what goes wrong if there is no solution. Let's try  a = 6, N = 7 and R = 4.

6x
≡7 4 ≡7 11 ≡7 18

so 6x−1
≡7 3 ≡7 10 ≡7 17 ≡7 24

and 6x−2
≡7 4

but we have been here before so there is no solution.

The connection with cyclic numbers

The sequence 1 > 3 > 2 > 6 > 4 > 5 > 1 > . . . crops up when you try to divide 1 by 7

10 over 7 = 1 remainder 3
30 over 7 = 4 remainder 2
20 over 7 = 2 remainder 6
60 over 7 = 8 remainder 4
40 over 7 = 5 remainder 5
50 over 7 = 7 remainder 1

The sequence appears in the list of remainders. This is because at each stage you take the 
remainder, multiply it by 10 and then divide by 7 to get the next remainder. The reason this process 
produces the same remainder sequence as the example with a = 3 above is that 10 and 3 are 
congruent (mod 7)

My favourite cyclic number (in base 10) is 0588235294117647 and is the repeated pattern of 
digits produced when you divide 1 by 17. This suggests that  a = 10, N = 17 should produce a 
complete repeating sequence. Let's see if it does:

1 > 10 > 15 > 14 > 4 > 6 > 9 > 5 > 16 > 7 > 2  > 3 > 13 > 11 > 8 > 12 > 1

For further information about cyclic numbers, see my article with the same name.
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Fermat's Little Theorem

Lets have a look at an example when n is prime e.g. N = 7. The following diagrams have a = 2, 
3, 4, 5 and 6. Each diagram shows the principal route which includes the starting point x = 1 in 
black with other routes with different starting points shown in grey.

First of all we can note that if a is greater than N (e.g. if a = 12 say) then the route followed will 
be identical to the route followed when a = 5 (because 12 ≡7 5 ) so these are the only case we 
need to consider.

Secondly we note that the 6 case fall into a number of groups. When a = 3 or a = 5, all the stones 
are visited once. When a = 2 and a = 4, there are two possible sequences, each of length 3; and 
when a = 6 there are three possible sequences each of length 2. The reason for the lengths of these 
sequences is because 6 (N – 1) has factors 2, 3 and 6. If we had chosen N = 11 then we would find 
that the sequences would have lengths 2, 5 and 10. In general we can conclude that, provided N is 
prime, whatever the value of a and whatever the starting point x, the length of the sequence will 
always be a factor of N – 1.

The consequence of this observation is that, whatever the value of a and x, if we take N – 1 steps, 
the last step will always take us take to the starting point again. In symbols we are saying that

x × aN −1
≡N x

For example, if I x = 5, a = 6 and N = 11 then 5 × 610
= 302330880 ≡11 5

Moreover, if we start from stone a (i.e. we put x = a) then we have (with N prime)

a N
≡N a

which is Fermat's Little Theorem.
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Euler's extension to Fermat's theorem

Now let us consider what happens when N is the product of two primes e.g. N = 15 Here are the 
13 possible sequences starting at 1 with other starting points shown in grey.

7



Since 14 (= 15 – 1) has factors 2, 7 and 14 we might expect to find sequences of each of these 
lengths but what we actually find is this:

a \ x 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 0, 4 0, 4 0, 4 0, 4 0, 2 0, 4 0, 4 0, 4 0, 4 0, 2 0, 4 0, 4 0, 4 0, 4

3 1, 4 1, 4 0, 4 1, 4 1, 1 0, 4 1, 4 1, 4 0, 4 1, 1 1, 4 0, 4 1, 4 1, 4

4 0, 2 0, 2 0, 2 0, 2 0, 1 0, 2 0, 2 0, 2 0, 2 0, 1 0, 2 0, 2 0, 2 0, 2

5 1, 2 1, 2 1, 1 1, 2 0, 2 1, 1 1, 2 1, 2 1, 1 0, 2 1, 2 1, 1 1, 2 1, 2

6 1, 1 1, 1 0, 1 1, 1 1, 1 0, 1 1, 1 1, 1 0, 1 1, 1 1, 1 0, 1 1, 1 1, 1

7 0, 4 0, 4 0, 4 0, 4 0, 1 0, 4 0, 4 0, 4 0, 4 0, 1 0, 4 0, 4 0, 4 0, 4

8 0, 4 0, 4 0, 4 0, 4 0, 2 0, 4 0, 4 0, 4 0, 4 0, 2 0, 4 0, 4 0, 4 0, 4

9 1, 2 1, 2 0, 2 1, 2 1, 1 0, 2 1, 2 1, 2 0, 2 1, 1 1, 2 0, 2 1, 2 1, 2

10 1, 1 1, 1 1, 1 1, 1 0, 1 1, 1 1, 1 1, 1 1, 1 0, 1 1, 1 1, 1 1, 1 1, 1

11 0, 2 0, 2 0, 1 0, 2 0, 2 0, 1 0, 2 0, 2 0, 1 0, 2 0, 2 0, 1 0, 2 0, 2

12 1, 4 1, 4 0, 4 1, 4 1, 1 0, 4 1, 4 1, 4 0, 4 1, 1 1, 4 0, 4 1, 4 1, 4

13 0, 4 0, 4 0, 4 0, 4 0, 1 0, 4 0, 4 0, 4 0, 4 0, 1 0, 4 0, 4 0, 4 0, 4

14 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2

(The first number is the 'tail' i.e. the number of steps before the sequence enters a loop and the 
second number is the length of the loop. Starting values which have no tail are highlighted in red.)

Surprisingly, there are no loops of length 7 at all; instead there are many loops of length 2 and 4. 
This is because the what is important is not N – 1 (= 14) but p – 1 (= 2) and q – 1 (= 4).

Of particular interest are the cells highlighted in yellow in which the starting value x is equal to 
the step value a. These always have no tail and in this case the loop length is never greater than 4.

Now Euler showed that the loop length could never be greater than (p – 1)(q – 1) which in this 
case is 8. The reason for the longest loop length only being half this is that p – 1 and q – 1 have a 
common factor of 2. It is only if p = 2 that will generate the maximum length. (For example, if N = 
14 and the step factor is 3 you will find a sequence of length 6). In general, I believe that the longest 
loop will equal to  (p – 1)(q – 1)/HCF(p, q) but I do not have a proof of this.

In any case, it follows that a( p − 1)(q − 1)+1
≡pq a

For example, taking p = 3 and q = 5, 7(2×4+1)
= 40353607 ≡15 7
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A more formal proof of Fermat's Little Theorem

The argument on page 6 relies of two observations: firstly, every starting number results in a 
loop and secondly, all the possible loops have the same length. These statements can be proved as 
follows:

Suppose that a certain starting number x does not result in a loop. If this is the case it must enter 
a loop at some later stage. (For example, look at the diagram on page 4 where the sequence goes 1, 
2, 4, 8, 4, 8, …) It follows that there must be a number x' (= 4 in the example) which has two 
different pre-images x1 and x2. i.e. x1 a ≡N x '    and   x2 a ≡N x '  Or to put it another way

x1 a = n1 N + x '    and   x2 a = n2 N + x '

Subtracting these equations we get

(x1 − x2)a = n3 N

Now if N is prime, either (x1 – x2) is divisible by N or a is divisible by N. Since neither of these 
are possible, (both being less than N) all starting numbers must be part of a loop.

The second statement is easily proved as well. If there exists a (shortest) loop of length s starting 
at x = 1 which goes 1 → a → a2 → … → as = 1 (mod N) then there will exist a second loop also of 
length s which goes k → ka → ka2 → … → kas = k (mod N). There are two possibilities; either this 
loop is entire or it consists of two or more identical sections. If the latter than there must be a 
number kat where t < s which is also equal to k (mod N). i.e. ka t

≡N k

Now it is possible to divide through by k but only if k and N are co-prime. Obviously if N is 
prime (and k < N), this condition is met so a t

≡N 1  But this contradicts our assumption that s is 
the shortest loop starting at 1. It follows that all loops must have length s.

Taken together, we have now proved that, providing N is prime, all starting numbers result in an 
immediate loop whose length must be a factor of N – 1. It follows that all loops will return to their 
starting number after N – 1 steps. (Those loops which are shorter that N – 1 will return after 2 or 
more loops). So what we are saying is that for any prime p

xa( p − 1)
≡p x

There are several other ways you can state the theorem: for example, putting x = 1 we can say 
that a(p – 1) must leave a remainder of 1 when divided by p. Alternatively, putting x = a, we can say 
that ap  must leave a remainder of a when divided by p. Or again, ap – a must be divisible by p.

Fermat's Little Theorem is widely used to test large numbers to see if they might be prime. The 
test is not infallible but if you can show that, for example, 2N  – 2 is not divisible by N then N is 
definitely not prime.
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A more formal proof of Euler's Theorem

The following lemmas are easily proved

I. If X ≡a r  and X ≡b r  then X ≡ab r  provided that a and b are co-prime

II. If X ≡a 1  then X n
≡a 1

Now if p and q are two different primes then from Fermat's Little theorem

X ( p − 1 )
≡p 1    and   X (q − 1)

≡q 1

By Lemma II 

( X ( p − 1))
(q − 1 )

≡p 1    and   ( X (q − 1))
( p − 1 )

≡q 1

But

( X ( p − 1))
(q − 1 )

= ( X (q − 1))
( p − 1)

= X ( p − 1)(q − 1)

Therefore by Lemma I

X (q − 1)( p − 1 )
≡pq 1

Therefore

X ( p − 1 )(q − 1 ) + 1
≡pq X

(Incidentally the proof can be extended to apply to numbers with any number of different primes 
N = pqr...)

RSA encryption

When you make a secure payment over the internet what happens is this. The bank sends you a 
120 digit number N (whose factors known only to the bank are p and q) the bank also sends you a 
smaller random number E. Both these numbers are public.

You code you card details etc. into a number X and calculate Y =XE (mod N) (efficient algorithms 
exist for calculating moduli without having to calculate XN explicitly.

Now the bank knows that if you raise X to the power of (p – 1)(q – 1) + 1 (mod N) you will 
return to the original number X so all the bank has to do is calculate Y^((p – 1)(q – 1) + 1 – E)
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