
The Euler-Lagrange Equation

A Roller-coaster

The kinetic energy of the car KE =
1
2

mv 2
=

1
2

m ẋ2

The potential energy of the car PE = m g h (x )

Newton's law of motion tells us that the acceleration of the car (in the x direction) is proportional to 
the effective horizontal force on the car and that this is equal to minus the potential gradient i.e.

a = m ẍ = −
d PE

dx
= −m g

dh (x )

dx

ẍ = −g
dh( x)

dx
(1)

If we multiply by -m integrate this equation with respect to x we get

m g h (x) = −m∫ ẍ dx = −m∫
d ẋ
dt

dx = −m∫ ẋ d ẋ = −
1
2

m ẋ2
+ E

from which we deduce that:

E = KE + PE

Now it is a remarkable fact that there is a completely different way of deducing this result.

Instead of assuming Newton's Law, we assume the Euler-Lagrange equation which looks like this:

d
dt (

∂ L
∂ ẋ ) =

∂ L
∂ x

(2)

where L = KE − PE

It is difficult to imagine a more different looking equation but it works. Here's how:

L =
1
2

m ẋ2
− m g h( x)

∂ L
∂ ẋ

= m ẋ and 
d
dt (

∂ L
∂ ẋ ) = m ẍ

∂ L
∂ x

= −m g
d h( x)

dx

so m ẍ = −m g
dh( x)

dx

as before.



I am struggling to understand why it works. Unlike E which is the total energy, L is the difference 
between the kinetic energy and the potential energy. When the roller-coaster is at the top of a hill, 
the KE is small and then PE is large; L is therefore small (or even negative). At the bottom of the 
dips, L is large. In general L is a function of both the velocity of the car and its position along the 
ride (which determines its height) By using partial derivatives with respect to ẋ and x, the Euler-
Lagrange equation neatly separates out the kinetic and potential energies.

But this is no magic trick or coincidence. For deep reasons which I do not understand, the Euler-
Lagrange equation is much more fundamental than Newton's laws. If you want to know the 
equations of motion for a particle moving under any system of conservative (i.e. energy conserving)
forces, all you have to do is write down the Lagrangian expression, differentiate it a few times and 
there you are. What is more, it doesn't just work in Cartesian coordinates, it works in any coordinate
system at all.

Planetary orbits

Lets see if we can deduce the equations of motion for a planet orbiting the Sun. In this case, the 
potential function is an inverse power law so, in polar coordinates:

PE = −
GMm

r
 

KE =
1
2

m( ṙ2
+ (r θ̇)

2
)

L =
1
2

m ṙ 2
+

1
2

mr 2
θ̇

2
+

GMm
r

(3)

Now since we have two independent coordinates, we have to evaluate two different E-L equations, 
namely:

d
dt (

∂ L
∂ ṙ ) =

∂ L
∂r

and 
d
dt (

∂ L
∂ θ̇ ) =

∂ L
∂θ

Taking the equation in r first:

r̈ = r θ̇
2

−
GM

r 2 (4)

which tells us that, in the absence of any angular rotation, the acceleration will be towards the Sun 
and proportional to 1/r2 as we should expect. The first term is, of course, the centrifugal 
acceleration. (It is correctly called centrifugal not centripetal because it is positive and directed 
away from the origin.)

If the motion is circular, then r̈ = 0 and

θ̇ = √GM
r3

which gives us Kepler's third law: T = 2π√ r3

GM

Now taking the equation in θ:

d
dt

(m r2
θ̇) = 0

Integrating this w.r.t. gives us m r 2
θ̇ = P

where P is a constant equal to the angular momentum of the system. (This is basically Kepler's 



second law).

We now have:

θ̇ =
P

m r 2 (5)

which tells us that as the planet swings closer to the Sun, its angular velocity speeds up.

Substituting equation (5) into equation (4) we get:

r̈ =
P2

m2 r3 −
GM
r 2 (6)

which is basically the equation of motion of the orbit. If r is large, the second term dominates and 
the planet accelerates back inwards; but as r gets smaller the first term dominates and pushes it back
out again.

Solving this equation is not a trivial exercise but the general solution is that of an ellipse:

r =
a (1 − ϵ

2
)

1 ± ϵcosθ
 (7)

where a is the semi-major axis, ε is the eccentricity and.

a (1 − ϵ
2
) =

P2

GMm2 (8)

If the planet has its perihelion at r = r0 (r0 < a) then

r 0 =
a(1 − ϵ

2
)

1 + ϵ
= a (1 − ϵ) (9)

hence

r 0(1 + ϵ) =
P2

GMm2

If the planet has a velocity v0 at perihelion, then

P = m r 0 v0

r 0(1 + ϵ) =
r 0

2 v0
2

GM

ϵ =
r0 v0

2

GM
− 1

Now 
r0 v0

2

GM
is a dimensionless quantity which equals 1 when v0 equals the circular orbit at that 

distance. We can therefore write:

ϵ = ( v0

vc
)

2

− 1 (10)

and a =
r 0

1−ϵ
=

r0

2 − (v0/vc)
2 (11)

It is also the case that:



T = 2π√ a3

GM
(12)

A space station is orbiting the Earth in a circular orbit with a period of 92 minutes and radius 6500 
km. It orbital speed is therefore approximately 7400 ms-1. The crew jettison a canister of garbage 
from the rear of the station at a speed of 1 ms-1. After one complete orbit the cannister will, 
presumably be approximately 5520 m behind the space station and after 7400 orbits, the station will
catch up with the cannister again. Is this true?

If the speed is reduced by a small factor p (= 1/7400 in this case), a will be reduced by a factor of 
2p because of the square in the denominator of equation (11). By similar reasoning T will be 
reduced by a factor of 3p because T is proportional to a3/2. The cannister with therefore return after 
only 7400/3 = 2470 orbits or 158 days.

Parametric solution

t =
T

2π
(ψ − ϵsinψ) (13)

where T = 2π√ a3

GM
(14)

x = a(cos ψ − ϵ) (15)

y = a √(1 − ϵ
2
)sin ψ (16)

where T is the period of the orbit, a is the semi-major axis and ε is the eccentricity.

N.B. Ψ is NOT the angle at the centre of the ellipse.

We can eliminate ψ from equations (15) and (16) as follows

cos ψ =
x
a

+ ϵ

sin ψ =
y

a√(1 − ϵ
2
)

( x
a

+ ϵ)
2

+
y2

a2
(1 − ϵ

2
)

= 1

( x + ϵa)
2

+
y2

1 − ϵ
2 = a2 (17)

which is the equation for an ellipse whose focus is at the origin and whose centre is at the point       
(-εa, 0)
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