
π   and   e

π and e are the two most important irrational constants in mathematics. π is well-known to every 
schoolchild as the ratio of the circumference to the diameter of a circle but e is far less well 
understood. Is there a simple way to explain e to the layperson?

e from compound interest

Suppose you invest £1000 at a rate of 5% per annum for 20 years. What return would you expect to 
net?

Your first thought might be to multiply 5% by 20 to get 100% and say that your investment would 
gain £1000 of interest and be worth £2000 at the end of the term.

But then you realize that the bank in giving you 5% per annum and that the interest gained every 
year is itself going to earn interest. If you take this into account, you will find that after the first 
year, your investment is worth £1050, after the second, it is worth £1050 × 1.05 = £1071, after the 
third: £124.55 etc. etc. Every year the investment increases by a factor of 1.05 so after n years it has
increased by 1.05n. We can easily calculate, therefore that after 20 years our investment will be 
worth £1000 × 1.0520 = £2653.29. Quite a significant advantage over our original estimate, don't 
you think?

It might occur to you now that if you could persuade the bank to do their interest calculation every 
month instead of every year, you could get even more money out of them. You try to persuade with 
the manager that 5/12% (=0.41666%) per month is the same as 5% per year. (Sadly, I think it very 
unlikely that he will agree with you but just let's suppose anyway!) Now your expected return is 
£1000 × 1.00416666240 = £2712.64 – Another £50 in your pocket!

Perhaps, by persuading the bank to calculate the interest every day or even every minute you could 
get even more money out of them! Lets see.

We started with the idea that if you invest a sum of money at 5% for 20 years you would earn 100%
interest. Lets generalise this idea to investing at 100/n % for n intervals of time (years, months, day, 
whatever). Our investment will grow by a factor of  (1 + 1/n) every interval (in our first calculation, 
n was 20 years so the annual factor was (1 + 1/20) = 1.05) and after n intervals it will have 
multiplied by a factor of (1 + 1/n)n.

Let us calculate this factor for some values of n

1 20 240 1000 1000000

2.00000 2.6533 2.71264 2.71692 2.71828
We see a remarkable thing. as we increase n, the interest factor increases – but it does so more and 
more slowly, levelling off at a figure of about 2.71828.

What this means is that, even if you bank compounded the interest every second or even every 
microsecond, the maximum interest it would pay would be 2.71828 times the capital (in the same 
period of time that the investment would double under simple interest.)

This magic number is e.

It is defined as the limit of  (1 + 1/n)n as n tends to infinity. i.e.:

e = lim
n∞

1 
1
n

n

(1)



The mathematics of growth

e is fundamental to the mathematics of any sort of growth where the percentage increase is 
constant.

Suppose a population increases by p% per year. Suppose that the population starts at y0 at year 0. 
What will the population be in year x? The answer is, of course,

y = y01 
p

100


x

 

Let's write 1 + p/100 as a simple factor f. Then we have

y = y0 f x

This kind of growth is called exponential growth because x appears as the exponent in the formula.

The remarkable properties of the function ex

One day in the newspaper you come across  the following advertisement:

Once in a lifetime offer!
The Royal Bank of Skittleland is offering you

100% per annum interest on £1*

and as a special inducement, if you reply within 24 hours,

we will compound the interest!

* Participators in the scheme must also invest £1,000,000 at the derisory interest rate of 0.1% for the same term
Maximum length of term: 10 years

We now know what this fantastic offer means. At the end of 1 year, if the interest was not 
compounded, we would earn 100% and our investment would be worth just £2 – and after 10 years 
it would be worth £11. But if the interest is compounded, after 1 year it will be worth £2.718 or £e; 
after 2 years it will be worth £e2; after 3 years £e3 etc. etc. After x years it will be worth £ex. After 10
years, your £1 will be worth a very respectable £22,026. (If you are tempted by this offer, it is 
always worth looking at the small print!)

Lets compare things using a graph.



The simple interest curve grows at a steady rate if £1 per year but the compound interest rate 
increases by a factor of 2.718 times every year. That is the crucial difference. But I want to draw 
you attention to a singular fact. Both curves start off in exactly the same way. In the first few days, 
they grow at the same rate.

Mathematically speaking, the significance of this is profound. What we are saying is that the 
gradient of the ex curve at x = 0 is 1. Now that may not sound very profound but it becomes more 
significant when we realise that the gradient at x = 1 must be e – and the gradient at x = 2 must be 
e2 etc. etc.. In fact we have stumbled on the most remarkable property of e of all:

The gradient of the curve y = ex at every point is equal to ex.

Indeed, this may be taken to be a definition of e and we can even use it to calculate the value of e.

e as the sum of a series

You may remember from your school days that in order to calculate the gradient of a function like
y = 3 x2  4 x − 1 you have to perform some magic called differentiation. This involves 

multiplying the coefficient of each term by the exponent and then reducing the exponent by 1. In the
case above the result is ẏ = 6 x  4 . Lets not worry too much about the details, the long and 
short of it is that the gradient of a quadratic equation is a linear one; the gradient of a quartic is a 
cubic etc .etc. It is obvious therefore that no finite polynomial can be the same as its gradient 
because it is always one temr short.

But what about an infinite polynomial? Can we find a polynomial expression such that it equals its 
own gradient? If we reduce every exponent by 1 we are still left with an infinite series. What a 
bizarre idea! But it works! Consider:

f x  = a0  a1 x  a2 x2  a3 x3  a4 x4  ...

First we will make it go through the point (0,1) like the exponential graph by putting a0 = 1

Now lets differentiate the whole thing.

ḟ x  = a1  2 a2 x  3 a3 x2
 4 a4 x3

 ...

If this expression is going to be the same as the previous one, we must have the following identities:

a1 = a0

2a2 = a1

3a3 = a2

4 a4 = a3

        etc.

from which it is easy to see that

a1 = 1

a2 =
1
2

a3 =
1
2

.
1
3

a4 =
1
4

.
1
3

.
1
2

        etc.

and that 



an =
1
n!

We now know of two functions which pass through the point (0,1) and which equal their own 
gradient. These functions must be the same so we conclude that:

e x
=

1
0!


x
1!


x2

2!


x3

3!


x4

4!
 ...

(I have written the first term a 1/0! to emphasise the symmetry of all the terms. To make this work, 
we must assume that factorial 0 is equal to 1)

Let's check this out with a few known values. Obviously when x = 0, the function reduces to 1 so 
that's OK.

When x = 1, we have

f 1 =
1
0!


1
1!


1
2!


1
3!


1
4!

 ... = 110.50.1660.042 ... ≈ 2.708

which seems to be converging very nicely on e.

When x = 2, we have

f 2 =
1
0!


2
1!


4
2!


8
3!


16
4!

 ... = 1221.330.666 ... ≈ 7.000

which is approaching e2.

So we now have our second method of calculating e. It is the sum of the following infinite series:

e =
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
1
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
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
1
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
1
4!

 ... (2)

Can we show that these two definitions are equivalent? Yes we can.

Consider the sequence

sn = 1 
1
n

n

We can expand the bracket using the binomial theorem:

sn = 1 
n
n


n n − 1

2!
1
n2 
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3!

1
n3  ...
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1
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1
n
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1
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1
n
1 −

2
n
  ...

Now as n tends to ∞, all the bracketed terms tend to 1 – hence

s∞ = lim
n∞

1 
1
n

n

= 1  1 
1
2!


1
3!


1
4!

... = e

This establishes the identity of equations (1) and (2)



π as a limit

Is there any way we can calculate π as a limit of a simple expression like  equation (2). 
Unfortunately, the answer is no. Archimedes calculated π quite accurately centuries ago by 
calculating the perimeter of a polygon with 96 sides and it is easy to see that the more sides a 
polygon has, the more closely will the ratio of its perimeter to its diameter approach π. The trouble 
is, there is no simple formula for the length of the side of an n-sided polygon. We can, however, 
make a start with a 6-sided polygon:

The perimeter is obviously 6 units and the diameter 2 so our first approximation to π is 3.

Now suppose, we knock each side out a bit to make it into a 12-sided polygon made of 12 isosceles 
triangles whose apex angle is 300. The perimeter will now be

12 × 2sin 150 = 6.2116

and our next approximation to π is 3.1058. (The base of an isosceles triangle of unit side and apex 
angle θ is 2 sin θ/2)

The problem with this is that the calculator we used to calculate the sin of the angle almost certainly
used a value of π to get the answer so our reasoning is circular and therefore invalid. (To be honest, 
when we used a calculator to calculate 1.0520 it may well have used a value of e so that was circular 
as well! On the other had, you could have done the calculations by long hand, couldn't you. 
Couldn't you? Oh well. It could be done.)

What we need is a way of calculating sin 150 without using a calculator. Now it is fairly easy to 
prove the following relation between the sin of an angle and the sine of half that angle:

sin/2 = ½ 1 − 1 − sin2
  

We know (by Pythagoras' theorem) that sin 300 = 0.5 so we can easily calculate sin 150 and it comes
to 0.2588 giving the value for π quoted above. And with the value of sin 150, we can calculate the 
value of sin 7.50 and hence the perimeter of a 48-sided polygon etc. etc. each time getting a better 
and better value for π.

In practice, this is a terrible way of calculating π but at least you can see how, in principle, it can be 
done.



A series for π

Let us try to find an infinite series for the functions sin(x) and cos(x). What do we know about 
them?

Just as we were able to define the function ex as that function which equals its own gradient, we can 
define sin(x) and cos(x) as that pair of functions which have the following relations:

The gradient of sin(x) is cos(x)

The gradient of cos(x) is -sin(x)

The gradient of -sin(x) is -cos(x)

The gradient of -cos(x) is sin(x)

We also know that sin(0)=0 and cos(0)=1 so we can start by assuming that

sin x = 0  a1 x  a2 x2  a3 x3  a4 x4  ...

cos x  = 1  b1 x  b2 x2
 b3 x3

 b4 x4
 ...

First we note that the sin function returns to minus itself after two diferentiations and itself after 
four diferentiations. Since the first term is zero, all the even coefficients must be zero as well.

Now since sin turns into cos after one differentiation, all the odd coefficients of cos(x) must be zero 
too.

Adding in the fact that two differentiations turns sin into minus sin, we have to conclude that the 
signs alternate like this:

sin x =a1 x − a3 x3
 a5 x5

− a7 x7
 ...

cos  x = 1 − b2 x2
 b4 x4

− b6 x6 ...

Further investigation reveals that

sin x  =x −
1
3!

x3


1
5!

x5
−

1
7!

x7
 ...

cos x  = 1 −
1
2!

x2


1
4!

x4
−

1
6!

x6
 ...

Unfortunately, while these formulae are of great importance, they do not really help us to work out 
a value for π . While we know that sin(π/6) = 0.5, we can't solve an infinite polynomial to work out 
its solution (though we can use numeric methods to home in on the answer). Putting x =  π/6 into 
the formula for sin(x) we get:

sin6  =0.523 −
1
3!

0.5233


1
5!

0.5235
−

1
7!

0.523x7
 ... ≈ 0.500

so it works all right.

On the other hand, a formula for arctan(x) (the angle whose tangent is x) is just what we need. This 
formula is:

arctan x  = x −
x3

3


x5

5
−

x7

7
− ...

Since the tangent of  π/4 is 1, we can say that

 = 4 × 1 −
1
3


1
5

−
1
7

− ... ≈ 2.895



The only trouble is – we need to take about 100 terms of this series to calculate even a couple of 
decimal places. Not to worry, though. There are much better series formulae which converge on the 
answer much more quickly and π has been calculated to over a trillion digits.

The connection between e and π

We have seen how both the exponential functions and the trigonometrical functions can be 
expressed as an infinite polynomial on the basis of the way they behave when they are 
differentiated. Let us put the three polynomials side by side.

ex
= 1  ix 

1
2!

x2


1
3!

x3


1
4!

x 4


1
5!

x5
 ...

sinx  = x −
1
3!

x3 
1
5!

x5 − ...

cos x  = 1 −
1
2!

x2


1
4!

x4
− ...

All the same terms are there but, because of these minus signs, we cannot just add sin(x) and cos(x) 
to get ex.

The trick is to calculate eix not ex. i (the square root of -1) behaves exactly like the sine and cosine 
functions. You need to multiply itself four times to get back to where you started from.

e ix
= 1  ix −

1
2!

x2
−

i
3!

x3


1
4!

x4


i
5!

x5
 ...

sin x  = x −
1
3!

x3


1
5!

x5
− ...

cos x  = 1 −
1
2!

x2 
1
4!

x4 − ...

Now the minus signs line up exactly where we need them. All we have to do is throw in an extra i 
and we arrive at probably the most remarkable formula in all of mathematics.

e ix
= cos x   i sin  x

and putting x = π

e i
= −1
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