Kappa functions

The exponential function

The series expansion of ¢” is:
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and it has the remarkable (and, apart from a constant of integration, unique) property that
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In other words, the exponential function is the only function which returns to itself when
differentiated once. It is therefore the solution to the equation:
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The hyperbolic functions
Cosh(x) and sinh(x) have the following expansions:
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from which it is easy to see that
7d(00;h(x)) = sinh(x)
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This means that the sinh and cosh functions return to themselves when differentiated twice and are
the solutions to the equation:
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dx’
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It is also easy to see that:
cosh(x) + sinh(x) = ¢*
and that

cosh(x) =
sinh (x) =

The relationships can best be visualised on a graph:
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Note how each graph is the gradient of the other and that, added together, they make €.

The question then suggests itself — what, in general, are the solutions to the equation
d"y
dx"

and what do they look like. Also — where do the trig functions sin and cos appear in this?
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The trig functions

Cos x and sin x have the following expansions:
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The alternating minus signs add a new complication
d(cos(x)) ~ sin(x)
dx
d(sin(x)) ~ —cos(x)
dx

This means that the sin and cos functions return to the negative of themselves when differentiated
twice and are the solutions to the equation:
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They are also solutions to the equation:
d'y —
dx’

but they are not unique in this respect.



They can be written as:
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The Kappa; function
Consider the three functions:
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It is easy to see that each function returns to itself after differentiation three times.
By analogy with the expressions for other functions, we can see that
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where k; = 1 = —% + ?i

(I have called functions like this 'kappa' functions because they all depend in a crucial way on the
primary n" root of 1 — which I like to call x,)

After the next differentiation, the «;andk} coefficients disappear, returning us to ko(x) again.
Now
et = e

where o = 3/2

Since «; is the complex conjugate of K; the imaginary parts of the expression will cancel out
and we can write:
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It is of interest to check this expression by differentiating it three times. Ignoring the e* term and the
numerical constants, we get first:
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then:
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and finally:
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which — amazingly — boils down to:
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Now — what does this new curve look like?

The blue line is the Kappas; function and the red line is its first derivative. When x is positive, the
functions look very much like the hyperbolic trig functions but for x negative, they oscillate with
ever increasing amplitude.

Since this curve is one of the solutions to the equation
d’ y
dx’

it traces the path of a particle whose rate of change of acceleration is equal to its displacement. |
doubt if it has must application but you never know!
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The Kappa, function
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The general solution to the equation cfi ij = y has the form:
x

f(x) = Ae" + Be™ + Ce™ + De'™

and it is easy to see that both the hyperbolic and the standard trig functions are included. I shall
define the Kappa, function as follows:

It can also be expressed in the following way:

cosh (x) + cos(x)
2

and 1t looks like this:

Because it is an even function, it is a lot less interesting than the Kappas; function.

Is is evident that there is a whole series of Kappa functions. For example: Kappas can be expressed
as

cosh(x) + cos(x) + 2cosh(x/v2)cos(x/V2)
4

Kg(x) =

and looks similar to K4 but with an even longer flat section.

I expect that the odd Kappa functions are quite complicated to express in terms of the standard
functions but that they all behave in a similar way to K.
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