
Kappa functions

The exponential function

The series expansion of ex is:
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and it has the remarkable (and, apart from a constant of integration, unique) property that
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In other words, the exponential function is the only function which returns to itself when 
differentiated once. It is therefore the solution to the equation:
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The hyperbolic functions

Cosh(x) and sinh(x) have the following expansions:
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from which it is easy to see that
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dx

= sinh x 

d sinh x 

dx
= cosh x 

This means that the sinh and cosh functions return to themselves when differentiated twice and are 
the solutions to the equation:
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It is also easy to see that:

cosh x   sinh  x = e x

and that

cosh  x =
e x

 e−x

2

sinh x  =
ex

− e− x

2

The relationships can best be visualised on a graph:



ex

cosh(x)

sinh(x)

Note how each graph is the gradient of the other and that, added together, they make ex.

The question then suggests itself – what, in general, are the solutions to the equation

d n y
dxn = y

and what do they look like. Also – where do the trig functions sin and cos appear in this?

The trig functions

Cos x and sin x have the following expansions:
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The alternating minus signs add a new complication
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This means that the sin and cos functions return to the negative of themselves when differentiated 
twice and are the solutions to the equation:
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They are also solutions to the equation:

d 4 y
dx4 = y

but they are not unique in this respect.



They can be written as:
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The Kappa3 function

Consider the three functions:
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It is easy to see that each function returns to itself after differentiation three times.

By analogy with the expressions for other functions, we can see that
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(I have called functions like this 'kappa' functions because they all depend in a crucial way on the 
primary nth root of 1 – which I like to call κn)

After the next differentiation, the 3
3 and3

6 coefficients disappear, returning us to k0(x) again.

Now
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where  = 3/2

Since 3
2 is the complex conjugate of 3  the imaginary parts of the expression will cancel out 

and we can write:
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It is of interest to check this expression by differentiating it three times. Ignoring the ex term and the
numerical constants, we get first:
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then:
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and finally:
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which – amazingly – boils down to:

e−1/2 x cos  x

Now – what does this new curve look like?

The blue line is the Kappa3 function and the red line is its first derivative. When x is positive, the 
functions look very much like the hyperbolic trig functions but for x negative, they oscillate with 
ever increasing amplitude.

Since this curve is one of the solutions to the equation

d 3 y
dx3 = y

it traces the path of a particle whose rate of change of acceleration is equal to its displacement. I 
doubt if it has must application but you never know!



The Kappa4 function

The general solution to the equation 
d 4 y
dx4 = y  has the form:

f x  = A ex
 B e ix
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 D e i3 x

and it is easy to see that both the hyperbolic and the standard trig functions are included. I shall 
define the Kappa4 function as follows:
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(where κ4 = i) and its expansion is:

K 4x  = 1 
1
4!

x4


1
8!

x8


1
12!

x12
 ...

It can also be expressed in the following way:
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and it looks like this:

Because it is an even function, it is a lot less interesting than the Kappa3 function.

Is is evident that there is a whole series of Kappa functions. For example: Kappa8 can be expressed 
as
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and looks similar to K4 but with an even longer flat section.

I expect that the odd Kappa functions are quite complicated to express in terms of the standard 
functions but that they all behave in a similar way to K3.
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