
Hopalong Fractals

Hopalong fractals are created by iterating a more or less simple formula in x and y over and over 
again. In general three types of behaviour can be distinguished. Often the series will diverge and the 
point will disappear off to infinity. Sometimes the point reaches a stable situation which repeats 
indefinitely with a finite period. Very occasionally, the point wanders around seemingly at random but 
remains within a finite set of points called a 'strange attractor'. Sometimes these attractors are extremely
complex. This program allows you to choose between a number of different formulae each of which 
have up to 4 variables  a, b, c and d which can be adjusted. Normally the starting point is (0,0) but by 
clicking on the picture you can initiate the run from anywhere. Points which are visited are either 
coloured white or in colour depending on the number of times that pixel has been visited. Facilities are 
provided which enable you to change the scale factor, display the origin and unit circle and vary the 
colours used.

In order to understand how these fractals are generated, we shall start with some simple generic 
cases which do not generate fractals.

Linear complex

x' = ax - by + c
y' = bx + ay

This is derived from the fundamental linear equation in complex numbers: Z' = AZ + C. What this 
equation essentially does is to take the point (x, y), rotate it by a certain angle (equal to the angle whose
tangent is b/a), multiply it by a constant (equal to √(a² + b²)) and add the constant c.

Using the default parameters (0.3, 0.95, 1), a 5 armed spiral converges on a stable point (0.5, 0.68) 
All points in the plane converge on this final point. In this case the angle whose tangent is 0.95/0.3 is 
about 72.5° - hence the five armed spiral.

If b >= 1 the formula becomes divergent for all a > 0. Try (0.1, 1, 0). Indeed, it is divergent 
whenever a² + b² > 1. If a² + b²) = 1 then the series generates a circle but this cannot be called an 
attractor because a) it is unstable and b) different circles are generated depending on where you start 
from. (Just click on the main window to initiate the series from a new starting position.) The attractors 
we are looking for are stable and should result from a large selection of initial positions.

Quadratic complex

x' = x² - y² + a
y' = 2xy + b

(This is derived from the fundamental linear equation in complex numbers: Z' = Z² + C)

 The default parameters put a = -0.8 and b = 0 (i.e. C = -0.8 + i0). If you click anywhere inside the 
corresponding Julia set (which is incidentally also a hopalong fractal generated by iterating the reverse 
function: √(Z - C)) you will generate a converging series. Outside the Julia set the series will diverge. 
(Technically, if you click exactly on the Julia set it will stay on the set but in practice it will fall off to 
one side or the other almost instantly.)



Now if you are familiar with the Mandelbrot set you will appreciate that the point (-0.8, 0) is inside 
lobe number 2 (the small lobe to the left of the main lobe on the axis.) The attractor here is a pair of 
points, not a single one. If you set a and b to (-0.5, 0) which is inside the main lobe of the Mandelbrot 
set, you will generate a single point attractor. Try setting a and b to (-0.15, 0.75) which is in lobe 
number 3 (the one at the top). How many points does the attractor consist of?

Simple ellipses

x' =  y + f(x)   where   f(x) = (bx - c)
y' = -x + a

If you take a complex number (x + iy) and multiply it by -i you get (y - ix) which turns x into y and y 
into -x. Multiplying by -i rotates the point by 90° in an anti-clockwise direction. Repeat this a further 3 
times and you get back where you started from. This is exactly what happens if you set a, b and c to 
zero - you always get 4 dots.

If you set b somewhere between 0 and 2, you will get an ellipse. What b seems to do is alter the 
angle of rotation which, provided that the angle is not a whole fraction of a circle, will generate a solid 
ellipse. (Set b = 1 for an exception to this rule.) Remarkably these ellipses are very stable and are not 
affected very much by changing a and c, only serving to change the size and position of the ellipse

The Classic Barry Martin fractal

x' = y + f(x)    where   f(x) = - SGN(x)√|bx - c)|
y' = a - x

This is where the fun starts! This fractal discovered by
Barry Martin in 1986 is essentially a modification of the
simple ellipse. The only difference is the change to the
function f(x). Don't ask me why it works - or how Barry
Martin came up with the idea. Just have fun!.

One thing to note about these patterns is that while they
are certainly fractal they are not strictly attractors because
you will find that the pattern generated depends critically
upon the initial starting point. In this respect they resemble
the simple ellipses produced by the previous algorithm. Each pattern consists of an infinite number of 
points and if you start on any of these points, you will generate the same pattern. But if you start from a
point a tiny fraction away from the first one, you will generate something completely different. 
Sometimes you will get a complex fractal and sometimes a chain of loops. If you are lucky and hit the 
fractal you will find that eventually it turns back into the default fractal which is generated by starting 
at the origin.

One characteristic feature of Barry Martin fractals is that they seem to grow without limit. If this is 
true, they are not periodic (unlike the ellipses) but this is impossible to prove using a computer with a 
finite resolution because eventually the computer is going to return so close to a point already visited 
that its rounding error will force equality.

What all this seems to suggest is that any particular set of parameters divides the whole plane into 
two sets of points; one set (which includes the origin) is a fractal set which ranges over the whole plane



and in which each point is only ever visited once and once only; and a second set of points which are 
periodic or quasi-periodic - that is to say their orbits are restricted to certain linear structures.

The positive Barry Martin fractal

x' = y + f(x)    where   f(x) = + SGN(x)√|bx - c)|
y' = a - x

Changing the sign of the function f(x) generates similar
but different fractals.

The additive Barry Martin fractal

x' = y + f(x)    where   f(x) = + √|bx - c)|
y' = a - x

Here only the positive root is used. (Using the negative
root produces the same fractals but reversed.)

The sinusoidal Barry Martin fractal

x' = y + f(x)    where   f(x) =  SIN(bx - c)
y' = a - x

Here the square root is replaced by a sin function. The
results are quite unexpected.



The Gingerbread Man

x' = y  + f(x)    where   f(x) =  ABS(bx)
y' = a - x

The default parameters just generate 6 dots but try
starting the iteration from a point just to the left of the
origin. Alternatively, increase b just a little.

Unlike the classic Barry Martin fractals which appear to
generate a single unique fractal which extends over the
whole plane, the gingerbread function appears to be
confined to a finite area. By clicking on the main window
using the right hand mouse button you can add more
fractals or periodic loops around him.

The Henon attractor

x' = 1 + by + cx²
y' = ax

This is a proper attractor because the same pattern is
generated wherever you start from (within a certain
region) but it depends critically on the values of the
parameters. The default parameters are (0.5, 0.6, 1.4).
Another interesting set of parameters is (-1, 1, 0.5). This
does not generate a strange attractor but produces a series
of distorted circles depending on the initial starting point.

The Duffing attractor

x' = ax - by - x³
y' = x

Like the Henon attractor, this attractor exists only for a
small range of parameters. 



The Tinkerbell attractor

x' = (x² - y²) + ax + by
y' = 2xy + cx + dy

This is a particularly attractive attractor and you can
find several other sets of parameters which also work e.g.
(0.9, -0.22, 2, 0.5) and (0, 0.15, 2, 0.65) etc. All of them
have a pleasing 3 dimensional look but this is totally
misleading especially if you are familiar with the Lorentz
attractor which is a genuine 3D attractor. This is
completely different. The points do not follow the
apparent lines; they jump around all over the place.
Consider one of the points where lines appear to cross (e.g.
the point (-0.74, -0.44) in the default set). This point must
go somewhere and it can only go to one place. It is impossible that a point "arriving from below" 
should "continue on upwards" or that one "arriving from the left" should "continue to the right". The 
attractor is simply a set of points on the 2 dimensional plane which are selected by the given 
parameters.

Now it may well be (and I strongly suspect that it is) that there exists a 3 dimensional algorithm 
which has a 3 dimensional attractor and that the Tinkerbell algorithm is a 2 dimensional projection of 
this attractor. If so this would explain its appearance nicely but I may be completely wrong about this.

The de Jong attractor

x' = sin(ay) - cos(bx)
y' = sin(cx) - cos(dy)

It is immediately obvious that x and y cannot stray
outside the box from (-2, -2) to (2, 2) whatever the values
of a, b, c and d but, unlike most other algorithms, almost
every set of parameters generates what looks like a strange
attractor. I say 'looks like' because just running a computer
program for a few million iterations does not guarantee
that certain apparently blank areas of the plane will not
eventually get filled.



The Linton 'Ghost' attractor

x' = sin(ay) - bx
y' = cx - cos(dy)

I shall finish with two attractors of my own. The first is
based on the de Jong algorithm and produces a wide
variety of seemingly random squiggles, one of which
looks quite like a ghost.

The Linton 'Tartan' attractor

x' = ay - b
y' = c - x²

This algorithm generates a sort of 2 dimensional version of
the well known logistic equation. You will see what I
mean if you use the default values with b set to zero.

The reason why you get the tartan effect is as follows. If
you calculate the second iterate (with b = 0) you get the
following equations:

 x'' = ay'     = a(c -  x²)
y'' = c - x'² = c - ay²

The significance of this is that x'' depends only on x and y'' depends only on y; and both equations are 
variations of the standard logistic equation x' = Ax(1 - x).

Putting b equal to a small value skews the attractor giving it a pleasing 'linen fold' effect as shown in 
the illustration above.

© J.O.Linton
Carr Bank: November 2016


	Hopalong Fractals

