
The Distribution of Primes

The Sieve of Eratosthenes

The following table shows the integers from 1 to 30, with all the numbers divisible by 2, 3 and 5 
sieved out.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

It will be noted that this process singles out 8 numbers which include all the primes in the region 
with the exception of the fundamental primes 2, 3 & 5. Also, for these purposes, 1 is counted as a 
pseudo-prime because it is not divisible by 2, 3 or 5.

The table for the next 30 integers looks like this:

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

49 50 51 52 53 54

55 56 57 58 59 60

This time, the process picks out all the primes correctly (with the exception of 49 because this is 
divisible by the next prime up). In fact it is clear that in any block of 30 integers, there will be 
exactly 8 numbers which are not divisible by either 2, 3 or 5. Why is this?

Well, sieving out the numbers divisible by 2 halves the numbers in the table leaving 15. Sieving out 
the 3's reduces the number by a third leaving 10 and sieving out the 5's reduces it again by a fifth 
leaving 8.

We can summarise this process as follows:

N = 30 ×
1
2

×
2
3

×
4
5

= 8

Alternatively we can say that the density of integers which are not divisible by either 2, 3 or 5 is 
equal to:

2, 3,5 =
1
2

×
2
3

×
4
5

=
8
30

In general we can say that, in any block of p1 . p2 ... pn integers where  p1 , p2 ... pn are primes there 
will be exactly

p1 p2 ... pn ×
 p1−1

p1

×
 p2−1

p2

× ... ×
 pn−1

pn

=  p1−1 ×  p2−1 × ... × pn−1

numbers which are not divisible by any of the listed primes. (Note that the block does not have to 



start and finish in any particular place because the pattern of the seive in every block is identical.)

Lets see what happens if the list includes the next prime up – 7. The size of the block needed is 210 
and our theorem predicts that in any block of 210 numbers there will be 

1 × 2 × 4 × 6 = 48

numbers which are not divisible by 2, 3, 5 or 7.

Now let us compare this figure with the number of real primes in the respective blocks.

Between 1 and 210 there are 46 real primes. The discrepancy is due to three factors:

Firstly, the numbers 2, 3 5 and 7 are not counted as prime because they are (of course) 
divisible by themselves. This brings our predited count of real primes up to 52

Secondly, the numbers 121, 143, 187, 209 and 169 are counted as prime when in fact they 
are not (being 112, 11×13, 11×17, 11×19 and 132)  (bringing the total of real primes to 47).

Thirdly, the number 1 is counted as prime (so the predicted count is reduced to 46).

Between 211 and 420 there are 35 primes.

The discrepancy this time is due to the fact that there are 13 composite numbers between 211 and 
420 but which are not divisible by 2, 3, 5 or 7 namely: 

11 × 23 = 253 13 × 17 = 221 17 × 17 = 289 19 × 19 = 361

11 × 29 = 319 13 × 19 = 247 17 × 19 = 323

11 × 31 = 341 13 × 23 = 299 17 × 23 = 391

11 × 37 = 407 13 × 29 = 377

13 × 31 = 403

This time, since the numbers 1, 2, 3 5 and 7 are not included in the block, all we have to do is 
subtract  13 leaving 48 – 13 = 35

Of course, if we want to estimate the number of primes in a certain block of integers, we really 
should include all the primes up to the square root of the largest integer. For example, if we wish to 
estimate the number of primes in the first 400 integers, then we should take into account all the 
primes less than 20.

This gives us the following estimate:
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= 72

to which we must add the number of fundamental primes used (7) and subtract 1 giving uas a best 
estimate of the number of primes between 1 and 400 of 78.

This can only be an estimate because our formula is only exact for block sizes equal to the product 
of the fundamental primes used which in this case is 510,510.

So how dooes our estimate measure up?

The number of real primes between 1 and 400 is exactly 78!

What about the block 401 to 800? This time we must throw in the primes 19 and 23 as well.
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= 65

(there are no corrections to be made this time because the block starts above the largest prime used.)

Now the number of primes between 401 and 800 is actually only 61 – a significant discrepancy 



from our estimate. The figures for subsequent blocks are as follows:

Highest prime Estimate Actual

1 - 400 17 78 78

401 - 800 23 65 61

801 - 1200 31 61 57

1201 - 1600 39 59 55

1601 - 2000 43 57 52

2001 - 2400 47 55 54

2401 - 2800 47 55 50

2801 - 3200 53 54 45

3201 - 3600 59 54 51

3601 - 4000 61 53 47

The first thing to notice is that the numbers in the last column fluctuate randomly. This is because 
we are only looking at a small part of the complete cyclic block so the number of primes in a block 
of a certain size will partrly depend on exactly where the block starts and finishes. The estimate will
always decrease monotonically. as more primes are factored in.

More importantly, the actual number of primes in a block always appears to be less than the 
estimated number. This is more puzzling because our previous analysis seemed to suggest that in 
any cyclic block, there would always be exactly the same number of primes. This analysis is false 
for the following reason. Our theorem states that, in any block of size  p1 . p2 ... pn there will always 
be the same number of numbers which are not divisible by p1 , p2 ... pn . But this is not the same 
thing as saying that the blocks will contain the same number of primes because blocks which 
contain larger numbers obviously have more potential primes by which they can be divided. In fact 
the only block size which could be said to work is the one we started with, namely 2 × 3 × 5 = 30 
because the highest prime which is less than the square root of 30 is 5. As we have see, the   2 × 3 × 
5 × 7 = 210 block has to take into account the primes 11, 13, 17 and 19 as well.

But why is the number of actual primes always less than the estimated number? Surely there ought 
to be an equivalent number of blocks which contain more than the estimated number of primes?

The following graph shows the estimated density of primes (in grey) and the actual density of 
primes (in blue) for 75 blocks of 200,000 integers from 1 to about 15 million.



It is, I think, extremely significant that the shape of the estimated density closely follows the actual 
density but in every case the actual density is significantly less.

Let us try a little experiment. Instead of using all the primes up to the square root of 15 million, let 
us use just the primes up to the square root of 1 million (ie primes < 1000) and just count as 
'primes,' only those numbers which are not divisible by this collection of primes.

As you would expect, for all blocks > 1 million, the expected density of sub-primes is constant 
(because we are only dealing with all the primes up to 1000)

As I think you would expect too, the actual density of subprimes in the largest blocks closely 
approaches the expected density. Indeed, when we reach numbers of the order of the product of all 
the primes from 1 to 1000, I would expect the two graphs to be identical.

The question then remains – why is it that, when the numbers involved are of the order of the 
square of the highest prime (1,000,000 in this case), the number of subprimes is consistently less 
than the estimate?

I can only conjecture the following explanation. The formula which I have been using for the 
density of primes in the region of n is

Pn = ∏  pi − 1/ p i

where the product is taken over all the primes up to √n.

Essentially what we are assuming here is that the probability of zapping a given number with a 
prime such as 7 is 1:7 and this is totally independent of the probability of the number being zapped 
with any other prime. It is clear that when the numbers are small (ie < the product of all the primes 
being considered) this assumption must be false. And the reason for this connection is that all the 
primes zap the number zero. If we constructed the Sieve of Eratosthenes by striking out, not all 
those numbers whose modulus with respect to a certain prime p was 0 but instead some random 
number less than p, then I suspect that we would find that the number of 'primes' closely followed 
the prediction because there would be no correlation with the different primes at any number.

If this is correct, we can now see why the acrual number of primes in any block is always less than 
the expected number. The reason is that any number you choose (>48) is always far smaller than 
than the product of all its potential primes factors. So every block is always in the region where 
there are significant correlations between the prime factors.
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