
Calculus of Finite Differences

Fitting a line to n points

Given two arbitrary points (x0, y0) and (x1, y1) you can fit a straight line through them whose 
equation is:

y = mx + c (1)

where m =
y1 − y0

x1 − x0
(2)

and c =
x1 y0 − x0 y1

x1 − x0
(3)

Likewise three points can be fitted uniquely using a parabola of the form:

y = ax2
+ bx + c (4)

It is easy to see that n + 1 points can be fitted to a polynomial of the form

y = a0 + a1 x + a2 x2
+ ... + an xn (5)

because we always have n + 1 equations to solve for n + 1 variables.

Finding the right general equation when n is large is tedious and usually unnecessary. It is, however,
possible to find the general equation in the simpler case when the given points have x coordinates 
equal to 0, 1, 2, …, n. For example, suppose we have two points (0,2) and (1,5). We shall write this 
as a list thus:

2    5    *    *   *

where the stars indicate that no points exist for the cases where x = 2, 3, 4 etc.

Now we shall calculate the differences between successive points:

2    5    *    *   *

3   *   *   *

*   *   *

The initial numbers of the two lines (in bold type) are 2 and 3 and it is no coincidence that the 
equation we desire is y = 3x + 2 (or rather y = 2 + 3x) because if we substitute x0 = 0 and x1 = 1 into 
equations (2) and (3) we find that m = y1 – y0 (which is the initial number of the second line) and 
c = y0. (which is the initial number of the first).

Now lets try a sequence of 3 numbers:

2    5    4    *   *

3   -1   *   *

-4   *   *

*   *

The addition of a new number adds an extra line and an extra number to our list of initial numbers 
which is now 2, 3, -4. We have seen how in the previous case, these numbers translate easily into 
the coefficients of the equation we are looking for but it is immediately obvious that the equation     



y = 2 + 3x – 4x2 is not going to work because the x2 term is going to mess up the second term as well
as giving the wrong answer for the third!. Nevertheless, it would be nice if we could find an 
equation of the form:

y = 2 + 3x – 4(f(x)) (6)

when f(x) is a second order function of x. But what could f(x) be?

Now we know that f(x) must be zero when x = 0 and x = 1. This suggests that we might try the 
function f(x) = x(x – 1) which fits the bill and has the value 2 when x = 2.

Unfortunately, this still doesn't work because it generates the sequence 2, 5, 0. It appears that the 
f(x) term is too large and we end up subtracting 8 when we should only be subtracting 4. This 
suggests that f(x) should be  x(x – 1)/2 not  x(x – 1).

Lets see if we can prove this generally by writing out the table of differences explicitly.

y0       y1       y2          *         *

y1-y0    y2-y1      *         *

y2-2y1+y0        *         *

     *         *          *

This means that the general equation we are suggesting is

  y = y0 + ( y1− y0) x + ( y2−2y1+ y0) x( x−1)/2 (7)

If this is correct, then putting x = 0, 1 and 2 into the equation should generate y = y0, y1 and y2 
respectively. We know it works for the first two cases. What about the third?

y = y0 + ( y1− y0) .2 + ( y2−2y1+ y0).2 .(2−1)/2

y = y0 + 2y1 − 2y0 + y2 − 2y1 + y0

y = y2

Hooray!!

We now know that the general equation of a parabola that fits three sequential integer points is

y = D0 + D1 x + D2 x (x−1)/2 (8)

where D0, D1 and D2 are the initial numbers of the successive lines of the difference table. It would 
appear very probable that the equation for 4 points would be something like:

y = D0 + D1 x + D2 x (x−1)/2 + D3 x (x−1)(x−2)/k (8)

The final term is a cubic (as it should be) and it is zero when x = 0, 1 or 2 but it is not immediately 
obvious what the constant k should be. On the other hand, the appearance of the descending 
sequence x, (x-1), (x-2) in the numerator strongly suggests that the denominator should be 1.2.3 and 
that k is simply n! (factorial n). i.e.

y = D0 + D1 x + D2

x (x−1)

2 !
+ ... + Dn

x (x−1)(x−2)...( x−(n−1))

n ! (9)

This remarkable formula was discovered and proved by Newton and published in Principia in 1687.
It is the discrete version of the Taylor series.

In order to prove that this is indeed the correct expression we have got to show that each time you 
'differentiate' it (i.e. take successive differences) you get the sequence  D0, D1, D2 etc. when you put 
x = 0.

Equation (9) is the general equation of a polynomial of order n and it gives the value of y at any 



value of x. If we substitute (x+1) for x we get the 'next' value of y in the sequence namely:

y ' = D0 + D1( x+1) + D2

(x+1) x
2 !

+ ... + Dn

(x+1) x (x−1) ...(x−n)

n !
(10)

Now we subtract equation (9) from equation (10) to obtain an equation giving the first line of 
differences (which we can also call y without confusion).

y = D1(( x+1) − x) + D2
( x+1) x − x ( x−1)

2 !
+ D3

( x+1) x( x−1) − x ( x−1)( x−2)

3 !
+ ... (11)

y = D1 + D2
2 x
2!

+ D3

3 x (x−1)
3 !

+ ... (12)

y = D1 + D2 x + D3

x (x−1)

2 !
+ ... (13)

Putting x = 0 gives y = D1.

Now equation (9) has the identical form to equation (13) so when this equation is 'differentiated' the
same thing will happen and the equation reduces to:

y = D 2 + D3 x + ... (14)

and so on until we run out of terms.

How beautiful is that?!!!!

Carr Bank

August 2016


	Calculus of Finite Differences
	Fitting a line to n points


