
Bernoulli Numbers

Introduction

In the article on Pascal's Triangle, the following results were obtained
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In general, ∑
i=1

n

i s is a polynomial expression in n of degree s + 1.

Lets compare these coefficients with the well known binomial coefficients.

s+1 Binomial coefficient P Series coefficient S (s + 1) × S / P

1 1 : 1 1 1 

2 1 : 2 : 1 1/2 :1/2 1 : 1/2 

3 1 : 3 : 3  : 1 1/3 : 1/2 : 1/6 1 : 1/2 : 1/6 

4 1 : 4 : 6  : 4  :  1 1/4 : 1/2 :1/4    : 0 1 : 1/2 : 1/6 : 0 

5 1 : 5 :10 :10 :  5 : 1 1/5 : 1/2 : 1/3   : 0 : −1/30 1 : 1/2 : 1/6 : 0 : −1/30 

6 1 : 6 :15 : 20 :15 : 6 : 1 1/6 : 1/2 : 5/12 : 0 : −1/12 : 0 1 : 1/2 : 1/6 : 0 : −1/30 : 0 

Remarkably we see a pattern emerging.

The coefficient of the kth term (numbered from 0 in order of decreasing power) Sk is related to the 

equivalent Binomial coefficient Pk   = Ck
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where Bk is a constant whose values are (numbered from zero):

1, 1/2, 1/6, 0, −1/30, 0, 1/42, 0, −1/30, etc

We noted in the other article that when s = 6 (s + 1 = 7) a factor of 7 had to appear in the numerator 
so the fact that B7 = 1/42 is no surprise. Indeed we should expect to see the prime numbers playing 
an important role in the determination of the Bernoulli numbers.

(We shall accept that the pattern continues indefinitely without proof!)

The question now arises, can we find a formula for the Bernoulli numbers?

Recursive definition

Rearranging equation (1) we have:
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NB the sum goes from 0 to s not s + 1 because the there is never any unit term.

If we put n = 1 we get
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We can split off the last term like this:
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A simple algorithm based on equation (2) for calculating Bernoulli numbers is given below.

 Private Function Bernoulli(ByVal n As Integer) As Double
    Dim A(n) As Double
    For m = 0 To n
      A(m) = 1 / (m + 1)
      For j = m To 1 Step -1
        A(j - 1) = j * (A(j - 1) - A(j))
      Next
    Next
    Return A(0)
  End Function

It turns out that all the odd Bernoulli numbers (>2) are zero and that alternate even numbers are 
positive and negative. All the numbers are rational fractions but they start to increase quite rapidly.

Bernoulli's numbers and the zeta function

Euler proved the quite astounding result that
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