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Introduction
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Many – one might even say all – processes in Nature are highly
repetitive. Whether it is the orbits of the planets or the oscillations
of a pendulum,  the patterns in the weather or the changes in the
population  of  locusts,  Scientists  have  always  assumed  that,
fundamentally,  these things are  governed by more or less simple
mathematical equations which are applied over and over again. This
strategy has been remarkably successful in the case of the orbits of
the  planets  and  the  oscillations  of  a  pendulum  which  can  be
predicted  with  great  accuracy;  but  predicting  the  weather  or  a
plague of locusts has not proved to be so easy.

For  many  years  it  was  thought  that  this  was  because  the
equations we were using were not sophisticated enough to model
such complex behaviour but then in the early 70's when computers
became  powerful  enough  to  make  the  dream  of  modelling  the
atmosphere  in  detail  or  investigating  how populations  develop  a
possibility,  a  remarkable  discovery  was  made:  it  turns  out  that,
under  certain  circumstances,  even  very  simple  equations  can
generate complex behaviour when they are iterated over and over
again.

In 1976 the biologist Robert May published a paper in which he
described  the  remarkable  properties  of  the  so-called  Logistic
equation:

x ' = Ax (1 − x )  
which can be used to model the annual development of a population
of animals with restricted food resources. Normally such a 
population will find a stable value but May showed that if the birth 
rate was too high, the population would fluctuate wildly and 
apparently randomly. (For a detailed discussion of this remarkable 
equation see the companion volume to this 'Chaos and the Logistic 
Equation.)

A decade earlier  the meteorologist  and mathematician Edward
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Lorentz  had discovered  similar  behaviour  in  a  set  of  differential
equations  which  he  was  using  to  model  the  behaviour  of  the
atmosphere.  (More  information  about  this  and  other  'strange
attractors' can be found in another companion volume 'Fractals and
how to draw them'.)

As long ago as 1887, the King of Sweden offered a prize to an
mathematician who could answer the question of whether the solar
system was or was not stable. Henri Poincaré won the prize but his
answer was not very encouraging. Apparently, we cannot even be
sure that at some point in the future the outer planets might not gang
up on Earth and throw us out of the solar system (but the latest
predictions  tell  us  that  this  is  unlikely to  happen before the Sun
blows up and destroys the Earth anyway).

At first,  the study of such chaotic  systems was regarded as  a
minor curiosity but when Benoit B. Mandelbrot published his book
'The Fractal Geometry of Nature' in 1982 it became an obsession
with anyone who owned a personal computer with modest graphic
facilities. One technique in particular proved to be absurdly simple
to  implement  on  a  computer  and  produced  stunningly  beautiful
results. The algorithm was called the 'Escape algorithm' and works
like this: (For more details see: 'Fractals and how to draw them') 

Start with a complex number z0 (the 'seed') and apply an iterative
formula to it over and over again until the point either escapes to
infinity or homes in on a stable cycle. If the point becomes stable,
colour the point (x, y) on the screen corresponding to the complex
number z0 black, otherwise colour it in a shade which depends on
the  number  of  iterations  needed  for  the  point  to  escape  beyond
some arbitrary bailout value.

 The simplest  and most widely studied formula is  z' =  z² +  c
(where  c is a complex number) and every value of  c generates a
different image. These images are popularly known as 'Julia sets'.
(Strictly speaking the Julia set is the set of all points which neither
escape to infinity nor home in on a stable value but we will adopt
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the popular usage here.)

 A couple of examples of Julia sets are shown below.

Some Julia sets,  like the one at  the top,  are made of separate
pieces and the point in the middle (which corresponds to a seed of
(0, 0)) escapes to infinity more or less quickly. In contrast, other sets
like the one below are connected and the origin is stable.  In the
latter case the the set is said to be 'filled'.

Using a suitable program it is possible to zoom in on different
parts of the set but you will quickly realize that the image is self-
similar. To put this another way – once you have zoomed beyond
the point at which the whole image is visible, further zooming does
not change anything.

Look  at  the  top  image and mentally  separate  the  two halves.
Each half  is  a distorted but nonetheless exact copy of the whole
image.

3



We have already noted that for every value of c there is a unique
Julia set. Here is a map of some of the Julia sets clustered round the
origin

In  the  background  you  can  see  the  shape  of  the  famous
Mandelbrot set. The Mandelbrot Set is a kind of map of all Julia
sets. It is generated by iterating a fixed seed ((0, 0) in the classic
case) over all values of c. What this means is that the colour of the
point on the Mandelbrot map is the same as the colour of the origin
of the Julia set which corresponds to that value of c.
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The Mandelbrot Map
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

The  Mandelbrot  Map  is  possibly  the  most  intricate  mathematical
object known. It is so complex that zooming in to quite modest levels
will get you to places that no one has ever seen before. It is also very
easy to get lost. What we need is some way of identifying the different
regions of the map. Fortunately, the map is highly organised and with a
bit of practice it is possible to look at a certain small region and have a
pretty good idea of where it is on the map.

The Mandelbrot Map with the principal lobes labelled
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The Major Lobes
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

The most obvious feature of the map is that it consists of a lot of
approximately circular  'blobs'  stuck on other  larger  'blobs'.  Since the
word 'blob' is rather vulgar, I shall refer to all the 'blobs' as lobes. The
biggest lobe (which actually looks more like a cardioid) is lobe number
1. The next largest lobe (the 'frontal' lobe) is lobe number 2. The next
largest lobe at the top of lobe 1 is labelled number 3 and subsequent
lobes going clockwise to the right are labelled 4, 5, 6 etc. (Since the
map is symmetrical about the X axis, we shall just consider the upper
lobes for the moment. We shall see how to label the lower lobes later.)
We shall call these lobes the  major lobes and the whole sequence the
primary sequence of lobes of which lobe number 1 is the first..

Now if you look closely at the main 'sprout' on lobe number 3, you
will see that it soon splits into two branches at a major 'junction' which
therefore has a total of 3 branches.
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This is a good reason for calling this lobe number 3. I shall refer to 
the main 'sprout' which connects to the lobe as an axon; I shall call the 
main junction a synapse, the branches dendrites and the whole 
assembly a neuron. In this case the neuron has one axon and two 
dendrites and we shall refer to it as having order 3.

Now lets have a look at the upper right hand side of the main lobe in
more detail:

.
In each case you will see that the order of the principal synapse 

attached to each lobe is precisely equal to the number of the lobe.

The problem is – we have now used up all the integers – but there are
still a huge number of lobes unlabelled. Let us see how these can be
labelled consistently.
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The Minor Lobes
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Approximately  halfway  between  lobes  3  and  4  there  is  the  next
largest lobe. What shall we call it? You might be tempted to call it lobe
3›4  (where  the  angle  quote  means  'moving  towards')  being  the  next
largest lobe between lobes 3 and 4 but there is a good reason why we
should not  do this.  We have seen that lobes 3 and 4 are  part  of the
primary sequence of lobes travelling clockwise round the main cardioid.
Now the logical way to get to the lobe we are interested in is to go to
lobe 4 first, then  change direction to get to lobe 4›3. This is because
lobe 4›3 is the second lobe in a secondary sequence of lobes starting at
lobe 4 and going  anticlockwise towards lobe 3. At first sight it might
appear  that between lobes 3 and 4 there are two sequences of equal
status:  one  clockwise  sequence  starting  at  lobe  3  and  another
anticlockwise sequence starting at lobe 4, these two sequences crossing
at  the  lobe  in  the  middle.  This  is  not  the  case.  The  anticlockwise
sequence  consisting  of  lobes  4,  4›3,  4›3›3,  4›3›3›3  … {3}  etc.  is  a
secondary sequence. (We can write this general sequence as  4›3n) The
clockwise sequence which we shall label 4›3, 4›3›4, 4›3›4›4 … {4} is a
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tertiary sequence and lobe 3 is definitely not part of it. (This sequence
can be written 4›3›4n)

I have marked one of the even smaller lobes with an arrow. What is 
its label? Well, to get there we should go first to lobe 4, then to 4›3, then
another step towards lobe 4 will get us to 4›3›4, but what about the next 
step? You might be tempted to just add another 3 to the end but this is 
not correct for reasons which will soon become clear. The next step is 
taking us not towards lobe 3 but to lobe 4›3. The correct label is 
therefore 4›3›4›(4›3). Note that the brackets are essential. In fact it is 
good practice to include brackets whenever the flow changes direction 
e.g. ((4›3)›4)›(4›3).

Now lets turn our attention to the upper left hand side of the main 
lobe. The secondary sequence on this side stretches from lobe 3 to lobe 
2. Its members are therefore labelled 3›2, 3›2›2, 3›2›2›2 ... {2} and its 
general form is 3›2n.

Can  you  work  out  the  correct  label  for  the  arrowed  lobe?  (The
answer is on the next page)
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1Now  if  you  use  your  Mandelbrot  program  to  zoom  in  on  the
principal synapses of these lobes you will discover that the order of lobe
4›3 is 7 and the orders of the members of the sequence 4›3n are 4, 7, 10,
13 … (remember, the order of a lobe is the total number of  branches
round the principal synapse). It is immediately obvious that the order of
a lobe is the sum of all the numbers in its lobe label. (e.g. the order of
lobe 4›34 or 4›3›3›3›3 is 16.)

What about the order of ((4›3)›4)›(4›3)? If you zoom in on its 
principal synapse and count the branches carefully you will find that 
there are exactly 18 which is 4+3+4+4+3.

To summarise what we have discovered so far,  every lobe can be
given a unique label (the 'Linton label') which effectively describes a
path of alternating clockwise and anti-clockwise sequences which have
to be taken to reach the lobe. Every lobe is part of either a clockwise or
an  anticlockwise  sequence;  the  clockwise  sequences  being  primary,
tertiary etc. and the anticlockwise sequences secondary, quaternary etc.
and every lobe is the start of a sequence going in the opposite direction
which terminates at  (strictly just before) the previous member of the
original sequence.

1 3›2›2›(3›2) or 3›22›(3›2)
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We are now in a position to state the first Mandelbrot theorem:

• The order of any lobe in a sequence is the sum of the orders of 
the previous lobe in the sequence plus the order of the lobe 
immediately beyond the limit of the sequence.

This can be stated in a slightly different way as follows:

• The nth lobe of a sequence which starts with a lobe of order A 
and terminates at a lobe with order B has order A + nB.

This rule even applies to the primary sequence given that lobe 1 is 
both the start and the terminus of the sequence.

Now what about the lobes below the X axis? These constitute a 
secondary sequence which starts at lobe 2 and terminates at lobe 1. The 
lobes should therefore be labelled 2›1, 2›1›1, 2›1›1›1 etc. or in general 
2›1n.

 As you can see, the rule for calculating the order of the lobe works
just  as  well  for  this  sequence  as  it  does  for  the  primary  sequence
because 2+1 = 3; 2+1+1 =4; 2+1+1+1 = 5 etc.
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Order, Periodicity and Step Size
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

The Mandelbrot Map is generating by iterating the function  z' = z² + 
c starting at the point z = 0 for all c in the complex plane. When c is 
inside the main body of the map the point eventually settles down to a 
steady series of repeating values. When c is inside the main cardioid 
(lobe 1) it converges on a single point. When c is inside lobe 2 it jumps 
between 2 constant values. In general, when c is inside a lobe of 
periodicity (or order) P, the point jumps between P values.

We have already seen that different lobes can have the same order – 
for example lobes 7, 4›3 and 3›22 all have order 7 and it interesting to 
trace out the path of z as shown in the following diagrams:

    
In the first case (lobe 7) the point z steps round the sequence one step

at a time tracing out an irregular heptagon. In the second case (lobe 4›3)
it steps 2 at a time while in the third it steps 3 at a time making a star 
shape. Now if you look at the star patterns generated by any sequence of
lobes between lobes 3 and 4 you will always find that the step size 
increases by 1 every lobe down the sequence. Take, for example. The 
sequence 4›3›4n. Lobe 4, being a primary lobe, has a step size of 1. Lobe
4›3 is one step down the sequence 4›3n so its step size is 2. Lobe 4›3›3 
will have a step size of 3, as does lobe (4›3)›4; lobe (4›3)›4›4 has a step 
size of 4 etc.

So perhaps the step size is just an indication of how many steps you
have to take to get to the lobe in question. Not so. Have a look at lobe
((4›3)›4)›(4›3). You will recall that this lobe has order 18. Now since it
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takes 4 steps to reach, you might think that its step size will be 4. In fact
it is 5. The reason is as follows. When you step from 4 to 4›3 you are
stepping towards a lobe (3) whose step is 1. So the step size increases
by 1. Likewise when going from 4›3 to (4›3)›4 you are stepping towards
another lobe of step size 1 so the step size increases by 1 again. But
when  you  take  the  final  step  from (4›3)›4  to  (4›3)›4›(4›3)  you  are
stepping towards a lobe whose step size is 2 so the step size increments
by 2. In fact, it is basically just the same as the rule for orders. This
givers us the second Mandelbrot theorem:

• The step size of any lobe in a sequence is the sum of the step 
sizes of the previous lobe in the sequence plus the step size of the
lobe immediately beyond the limit of the sequence.

Or to put it another way

• The nth lobe of a sequence which starts with a lobe of step size A 
and terminates at a lobe with step size B has step size A + nB.

Now it may occur to you straight away that if the rule for step sizes is
exactly the same as the rule for orders, then the step size of any lobe 
ought to be the same as its order. This is clearly not the case. But why?

The answer lies in the fact that lobe 1 is both the start and the 
terminus of the primary sequence of lobes 1, 2, 3, 4, … {1}. It is clear 
that the order of lobe 1 is equal to 1 – but what is its step size? Since an 
order 1 lobe doesn't step anywhere, we can assign the step size how we 
like. Let us assign it a step size of 1 for the purposes of starting the 
sequence off, but assign it a step size of 0 when it comes to adding extra
steps in the sequence. Immediately all the members of the primary 
sequence will have a step size of 1. Everything else follows.

Calculating the step size from the Linton label is easy. Simply 
expand all the exponents and then count the number of numbers! e.g. 
the step size of lobe 3›24 will be [3›2›2›2›2] = 5. The step size of 
(4›3)›4›(4›3)2 will be [4›3›4›(4›3)›(4›3)] = 7 because there are 7 
numbers in the label.

When calculating the step size of lobes below the axis, for example 
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lobe  2›1›1›1 which has a periodicity of 5, we find that it has a step size 
of 4. This makes sense because with 5 stepping stones, stepping round 4
steps at a time one way is the same as stepping round one at a time in 
the opposite direction.

So to summarise what we have said so far, every lobe has a unique 
'Linton label' which tells us exactly where it lies on the main cardioid, 
and from the 'Linton label' we can calculate two numbers: the 
periodicity P and the step size Q. The obvious question now arises: 
given the values of P and Q, (P > Q) is there always a unique lobe 
which has just these properties. Amazingly, (provided that P and Q are 
co-prime) the answer is yes.

Let us see if we can find a lobe with periodicity P = 8 and step size 
Q = 3. We are looking for 3 numbers which add up to 8. In addition we 
should note that Linton labels only ever have two different consecutive 
digits in them (because any lobe must lie between two consecutive 
principal lobes) This means that the numbers we are seeking must be 2, 
3 and 3. Now all we have to do is arrange these into a valid Linton label.
The answer is, of course,  (3›2)›3.

But what happens if we try to find a lobe with  periodicity P = 15 and
step size Q = 6 (noting that 15 and 6 have a common factor)? We start 
by looking for 6 numbers which add up to 15. These numbers are  2, 2, 
2, 3, 3, and 3. But when we try to find a valid Linton label using these 
numbers we run into a problem. Obviously the label must start with  
3›2. If we chose to change direction at this point we reach  (3›2)›3 and 
we could go a step further to reach (3›2)›3›3. But now we reach the 
problem. We cannot go on because we have run out of 3's; but we 
cannot change direction either because that means moving towards 
(3›2)›3 making the next lobe ((3›2)›3›3)›(3›2)›3 not ((3›2)›3›3)›2›2. In 
fact there is no valid Linton label which uses 6 numbers adding up to 
15. There is, however, a valid label which uses 2 numbers which add up 
to 5 namely 3›2.

So what is the deep reason behind all this amazing degree of 
organisation?
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Rotation Numbers
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

We can  state  what  we have  learned in  the  form of  a  theorem as
follows:

• Every lobe is associated with a unique fraction Q/P where P is 
the periodicity of the lobe and Q is the step size and where P 
and Q are co-prime. 

• Conversely, for every rational fraction Q/P expressed in its 
lowest terms there exists a unique lobe with periodicity P and 
step size Q.

Now quite apart from the fact that the Mandelbrot Map is organised
in the way I have described, it seems little short of miraculous that the
two  theorems  which  I  have  called  the  first  and  second  Mandelbrot
theorems should lead to the above result. The reason is as follows.

Every sequence of Mandelbrot lobes is characterized by a series of
fractions called its  Rotation Number Q/P where P is the periodicity of
the lobe and Q is the step size. Lobe number 1 has periodicity 1 and step
size 0 so the rotation numbers of the primary lobes are:

1
1

1
2

1
3

1
4

... {0
1}

The anticlockwise sequence 4, 4›3, 4›3›3, … {3} has the increasing
series

1
4

2
7

3
10

4
13

...{1
3}

while  the  clockwise  sequence  4›3,  (4›3)›4,  (4›3)›4›4  … {4}  has  the
decreasing series

2
7

3
11

4
15

5
19

...{1
4}

In each case the next fraction is generated by adding the numerator of
the limiting fraction (in curly brackets) to the numerator of the previous
fraction (because of the second Mandelbrot theorem) and by adding the
denominator of the limiting fraction to the denominator of the previous
fraction  (because  of  the  first  Mandelbrot  theorem).  (This  method  of
combining  fraction  is  called  Farey  addition  after  an  18 th century
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mathematician called John Farey and the result is called the mediant of
the two fractions).

Here is  a map showing a selection of rotation numbers calculated
from the Linton labels.

We can generate all these fractions by starting with the two fractions
1/1  and  0/1  and  using  Farey  addition  to  generate  a  whole  tree  of
fractions (called a Stern-Brocot tree) shown opposite. You will instantly
recognise  the  rotation  numbers  of  the  lobes  of  the  Mandelbrot  Map
(turned clockwise by 90°)

Now it is quite easy to prove that the Farey sum of two fractions
must lie between the two original fractions and this guarantees that all
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the fractions when read from left to right will be in numerical order. 
This fact alone proves that no fraction will occur more than once. This 
implies that every lobe round the main cardioid of the Mandelbrot map  
has a unique rotation number and that the rotation numbers are in strict 
numerical order starting at the cusp of the cardioid and moving round 
anti-clockwise.

What is not so obvious is the fact that every possible fraction (in its
lowest  terms)  will  be  generated  eventually.  (The  reason  for  this  is
basically that if there exists a fraction a/b which does not occur in the
Stern-Brocot tree, then you can calculate a second fraction  c/d which
also cannot appear in the tree where c<a and d<b. This means that you
can calculate another fraction e/f which cannot appear in the tree either
and so on.  Eventually you must  reach the fraction 1/z.  But  1/z does
appear in the tree so the assumption that a/b does not appear in the tree
must be false!)2

The Stern-Brocot tree gives us a way of calculating the Linton label
from the periodicity and step size. For example, the lobe with rotation
number 4/11 is reached from lobe 3 by taking one step towards lobe 2
and then 2 steps towards lobe 3. Its label is therefore (3›2)›3›3 and it is
easy to confirm that its periodicity will be 11 and step size 4.

2 A slightly more rigorous proof is given in the appendix.
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Synapses, Periodicity and Step Size
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

What, exactly, are synapses? I have stated above that when c is inside
any of the main lobes (or any of the surrounding minibrots), the starting
point z = (0, 0) settles down to a periodic orbit whose periodicity is the
order of the lobe (or minibrot). Now it is easily shown that for every
value of c in the plane, there are two values of z which map onto itself
(the roots of the equation z2 + c = z). If c is inside lobe 1, one of these
'self-mapping' points is an attractor and z = 0 homes in on it more or less
quickly. (The other is a 'repellor' and is unstable.)

For any value of c, there are also values of z which are periodic (e.g.
the roots of the equation (z2 + c)2 + c = z will have periodicity 2). If c is
inside lobe 2, the self-mapping point is unstable but one of the period 2
self mapping points is an attractor and z oscillates between two points.
We say that z undergoes a bifurcation at the point where lobes 1 and 2
meet. Likewise, if c is inside lobe 3, z will home in on a cycle of period
3 etc.

If, on the other hand,  c is anywhere outside the principal lobes (or
any of their sub-lobes), z is very unlikely to find one of its self-mapping
points and usually shoots off to infinity.

But just occasionally, after wandering around for a bit, z may happen
to hit precisely on one of its self-mapping (or periodically self-mapping)
points. The values of  c for which this happens are called  Misiurewicz
points and these are the synapses. Like points inside the lobe they have
infinite depth but unlike them they are repelling points not attractors.
What this means is that if c is even a tiny bit off the true value, z rapidly
spirals  away from the stable point off  to infinity.  It  is not surprising
therefore that points in the vicinity of a synapse should have a degree of
symmetry  appropriate  to  the  periodicity  of  the  lobe  to  which  it  is
attached.

I shall have more to say about Misiurewicz points and synapses when
we come to examine the principal axon in more detail.
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The  periodicity  of  a  lobe  is  obvious  as  soon  as  you  look  at  the
principal synapse but is there any way we can also determine the step
size of the lobe and hence its fraction? Look at the two order 8 lobes
shown below:

   
One of them is lobe 8 with associated fraction 1/8 while the other is

lobe 3›2›3 with associated fraction 3/8. But which is which? The way to
tell is by looking at the way the different dendrites are organised. In the
image  on  the  right,  the  dendrites  increase  in  length  steadily  in  a
clockwise direction but in the one on the left the dendrites seem to be
randomly organised. It is not difficult to guess that it is the one on the
right which is attached to lobe 8. As for the image on the left, if you
start from the main axon and step 3 dendrites at a time in a clockwise
direction,  the dendrites  do generally get  smaller  and smaller  but  not
consistently so.

There does not seem to be an easy way to determine the step size of a
lobe unambiguously just by looking at its principal synapse.
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Labelling Tertiary Lobes
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Lobe 1 is the primary lobe.

The  major lobes 2, 3, 4 etc. are all secondary lobes because they
sprout off the primary lobe.

Lobes  3›2, ((4›3)›4)›(4›3) etc. are  minor secondary  lobes – minor
because they require several steps to reach but secondary because they
still sprout off the primary lobe..

The question now arises: how shall we label the tertiary lobes which
sprout off secondary lobes such as lobes 2, 3, 4 etc.?

It is obvious that all these lobes are organised in exactly the same
way as the major and minor lobes which sprout off lobe 1. So all we
have to do is use exactly the same notation as before but prefix it with
an indication that the lobe referred to sprouts off lobe 2 not lobe 1. We
do this by using a colon (meaning 'attached to') so the major lobes on
lobe 2 are 2:2, 2:3, 2:4 etc.
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Now for consistency we should recognise that lobe 2 is not a primary
lobe and therefore should strictly be called lobe 1:2. In fact all the labels
we have used up to now should be prefixed with 1: –  but we can often
omit this without confusion. However, when referring to tertiary lobes,
it would be as well to include it where appropriate.

For example, we might want to refer to lobe 3:2 (i.e. the largest lobe
sprouting off the major lobe 3, illustrated below) and to distinguish it
from lobe 2:3 (illustrated opposite).  If we refer to these lobes as 1:3:2
and 1:2:3 respectively, it is more obvious which is which.

  There is one final point which must be addressed. We have noted
that the negative lobes on the primary lobe 1 should be labelled  2›1,
2›12  etc. and those on lobe 2 should be labelled  2:2›1, 2:2›12  etc. But
what about the negative lobes on lobe 1:2:2? Should they be labelled
2:2:2›1, 2›12 etc. or  2:2:2›2, 2:2:2›22 etc. Are they heading for lobe 1 or
lobe 2? The answer is clear when we consider the periodicity of these
lobes.
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The Periodicity of Tertiary Lobes
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

We noted that regarding the major lobes of lobe1, the order of each
lobe (i.e. the number of branches in its principal synapse) was equal to
its  periodicity.  This  is  not  the  case  with  the  major  lobes  on  lobe  2
because lobe 1:2:3 has period 6, in spite of the fact that its principal
synapse has order 3. The rule, however, is clear. In order to calculate the
periodicity of a lobe, you have to multiply the numbers on each side of
the colon. In fact we can go further than this. If you have a lobe of order
A sprouting off a lobe of order B the periodicity of the lobe will be
A×B.  For  example,  the  period  of  lobe  1:2:4›3  will  be  14  and  the
periodicity of lobe 1:3›2:4 will be 20. (Can you find this lobe?)

Now what about those negative lobes? According to the rules, lobe
1:2:2:2›1  should  have  periodicity  12  (2×2×3) while  lobe   1:2:2:2›2
should have periodicity 16 (2×2×4). In fact it has periodicity 12 so the
former appellation  is  correct. (Indeed the latter  label  does  not  really
make any sense. How can you move from lobe 2 towards lobe 2?)

While  we are  looking at  the  tertiary lobes  on  lobe  2,  it  is  worth
noting that we can still assign the same rotation numbers to these lobes
as  the  secondary  lobes  on  lobe  1.  In  fact,  not  only  do  the  rotation
numbers determine the order in which the lobes appear round the lobe,
they also determine their position. For example lobe 1:2:3 has rotation
number  1/3  and  is  exactly  one  third  of  the  way  round  the  lobe.
Likewise, lobe 1:2:4 is one quarter of the way round the lobe putting it
exactly at the top. (You are probably wondering why this simple relation
appears to hold for the tertiary lobes on lobe 2 but not the secondary
lobes on lobe 1. Have patience!)

What  can we say about  the step size of  these tertiary lobes?  The
following diagram shows the orbit of  z when  c is inside lobe 1:2:3. It
has periodicity 6 but it does not step round the 6 points in a cyclic way;
instead it  steps alternately round two groups of 3 points.  Its rotation
number is still 1/3 but we have to bear in mind that we must interpret
the numerator slightly differently.
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Would you care to hazard a guess as to what the orbit of z would look
like  if  c was  inside  lobe  1:3:3?  Well,  surely it  will  step  round in  3
groups of 3. Here it is:
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Neurons and their Features
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Now we know which parts of the map we are talking about, lets start 
to look at the various different neurons and their features. Here is the 
principal neuron of lobe 3:

 Of the two dendrites it is the first (measured clockwise from the 
axon) which is the longer and leads to the largest minibrot. (Minibrots 
are small islands of stability with the same general shape as the whole 
set.) The axon has a minibrot approximately half way between the lobe 
and the synapse and, if you look closely, you will find an infinite 
number of other smaller minibrots on either side making a fractal 
sequence. The whole structure is linked together with a filigree of  
channels which are believed to have infinite depth. Every single synapse
has order 3. You can magnify any synapse as much as you like and you 
will never reveal anything other than a straightforward junction. If, 
however, you spot what appears to be a synapse with a higher order – 
for example, 6 – you will find a minibrot there with two order 3 
synapses, one on each side. This is one of the smaller minibrots on the 
principal axon of lobe 3:
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In fact, every minibrot in the map has this basic structure: an axon 
(or dendrite) running through the middle of the minibrot and two more 
or less prominent synapses symmetrically on either side. You will notice
that four smaller order 3 synapses have appeared in the four quadrants –
and eight even smaller ones between them. As you magnify smaller and 
smaller minibrots, the binary symmetry grows so that eventually you 
can find minibrots surrounded by 64 or 128 synapses like this one:
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Neurons of high order lobes are much more interesting. This is the 
principal neuron of lobe 15 which is in the region known as 'elephant 
valley' for obvious reasons (though this elephant happens to be upside 
down!):

The principal synapse is the spiral structure at the bottom left. The
first  dendrite  (measured  clockwise  from  the  axon)  is  the  longest.
Halfway along there is a large minibrot. If you trace along its principal
axon (the one that emerges from lobe 2 on the minibrot) you will see
that it leads to another synapse of order 15 but this time it is dendrite
number 14 which is longest and leads via a small minibrot to the next
largest synapse. This pattern is repeated continuously on a smaller and
smaller scale resulting in a beautiful spiral which seems to disappear
down into infinite depths. Every dendrite on every synapse ends in one
of these infinite spirals.
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The image below shows the principal neuron of lobe 3›26 which also 
has order 15 and step size 7. (You will notice that the 14 dendrites fall 
into two distinct series of 7. This is, of course, related to the step size of 
the lobe.) The largest dendrite ends in an infinite spiral forming a 
curving head which has reminded some people of a sea horse. This 
wedge-shaped promontory between lobes 1 and 2 is often known as 
'sea-horse valley'.

 

The minibrots which link the large synapses together are strikingly 
symmetric and would make a good design for a wallpaper. (Once again, 
it is worth noting the basic structure of a minibrot, namely an axon or 
dendrite running through it with two prominent synapses, one on each 
side.)
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The images on this page and the next are of the principal neuron of
lobe  1:2:12  which  can  be  found  on  the  opposite  side  of  'sea  horse
valley'.

You can tell  that they are on lobe 2 rather than on the main lobe
because the infinite spirals are double: they go in and then come out
again! This gives the linking minibrots a particularly pleasing aspect.
(The point at the bottom of the spiral is another of those  Misiurewicz
points and is, in fact, a synapse of order 2 – but I will say more about
this later.)
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I love this image – it looks to me like a beautifully ornate bracket for
a candlestick!

 

This  is  one of the numerous minibrots in  the spiral  arms with its
dendrite running down the middle and two prominent spiral synapses on
either side.
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Looking on the other side of lobe 2 (i.e. between lobe 1:2:2 and lobe 
1:2:3), the neurons frankly look a bit of a mess; but the tips of the 
dendrites are rather lovely. Here is the tip of dendrite number 8 (the 
largest one) on lobe 1:2:3›26 and a close up one of the minibrots which 
link the order-15 synapses:
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It is interesting to note that, while most dendrites curl round into 
infinite spirals, these are basically straight. Here is one of the dendrites 
on lobe 1:2:2:15 together with a close up of the minibrot just to the left 
of centre:

Other interesting dendrites can be found in places like 1:2:3:10 and 
many interesting patterns can be found within these structures which 
have been likened to sceptres.
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Neurons on the Other Major Lobes
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

We have seen that lobe 1:3 has order 3 but what does this mean in
terms of its tertiary lobes? Here is an image of lobe 1:3:5:

It is immediately obvious that we have synapses both of order 5 and 
order 3. The principal synapse is of order 5 and is attached to the lobe 
by a short straight axon but we can also see a beautiful triple spiral 
structure on the end of every dendrite which is, of course, a synapse of 
order 3. If you look at any of the dendrites in more detail you will find 
many more 'straight' order 5 synapses and spiral ones of order 3.

When we looked at the the secondary lobes of lobe 2 we saw double 
spirals. Here is the spiral synapse of lobe 1:3:10. It is still an order 3 
synapse but it is given a lot more twists because of the high order of the 
lobe to which it is attached.
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Now have a look at the main neuron of lobe 1:5:3:
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The  order  5  spiral  synapse  is  clearly  visible  but  this  is  not  the
principal synapse which always lies between the lobe and the largest
minibrot. It is pointed out in the illustration and has order 3. In fact you
can find lots more order 3 synapses if you look for them.

We are now beginning to get a feel for the structure of a neuron. The
synapses seem to mirror the periodicity of the lobes to which the neuron
is attached.

But there is more.

Neurons do not actually sprout from a lobe such as 1:3:5 because
there is always an infinite string of subsidiary lobes of order 2 between
it and the place where the neuron actually starts. We could say that the
principal neuron of lobe 3 actually starts from lobe 1:3:5:2:2:2:... We
should therefore expect to find an infinite number of order 2 synapses as
well as the synapses of order 3 and 5. And if the rule really holds strictly
we should also find a synapse of order 1 somewhere. So where are they?

Well, the latter is easy to find. Every dendrite ends somewhere – and
a terminus has only one branch so it is indeed a synapse of order 1. (You
may recall that every synapse is a Misiurewicz point and these are the
values of c where the point z wanders round for a while before hitting
on a periodically self-mapping point.)

Now what about the order 2 synapses? You will recall that there is 
always an absolutely straight section between every lobe and the first 
major synapse. This is because there are an infinite number of order 2 
lobes stacked one after another along the axon. In fact there are an 
infinite number of order 2 synapses between any pair of minibrots all 
along the dendrites as well.

Now here's a little test: using the principles which have been outlined
so far, can you tell which lobes the following images are of?
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In each case the most obvious feature is spiral synapse but this is not 
really the most important feature. That is the first synapse at the end of 
the axon – the principal synapse. This is the order of the last lobe in the
sequence (not counting all the order 2 lobes). The one at the top has 
order 5 and the one below order 4. Knowing the order of a lobe does not
tell us uniquely which actual lobe it is because, as we have seen, 
different lobes can have the same order but I can tell you that these are 
both major lobes. (In fact we can infer this from the fact that in both 
cases the dendrites at the principal synapse form a single sequence 
descending in size.)3

3 The lobe labels are 1:4:5 (top) and 1:5:4 (bottom).
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This is the principal neuron of lobe 1:3:2:4. Note how the synapses 
can be read backwards from the tip.

and this one is 1:2:3:6
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The following four neurons all have synapses of the same order nut
some of them are from minor lobes. See if you can identify them. The
answers are at the bottom.

   

   

Anticlockwise from the bottom left the answers are: 1:7:3,
1:3›2›2:3. 1:3:4›3 and 1:4›3:3
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Axons and Dendrites
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Every synapse has one axon and several dendrites. The axon is 
ultimately connected to the main lobe while the dendrites terminate in a 
synapse of order 1. You can tell the difference between an axon and a 
dendrite because the minibrots on the axon point towards the principal 
synapse while the minibrots on the dendrites point away from the 
synapse. You can see this clearly when the order is small but it is not 
always so easy to see the difference when the order of the lobe is large. 
Here is the principal synapse of lobe 13. Can you see which of the 13 
branches is the axon?

At first glance, all the branches look pretty much identical but a close
up look at the two 'eyes' near the top of the image reveals subtle 
differences.
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In the upper of the two images on this page, the axon flows straight 
down through the minibrot as indicated by the arrows but in the lower 
image, the 'axis' of the dendrite follows a zig-zag path up from the 
bottom and out at the top right hand corner.

The upper image is therefore the axon and the lower one the dendrite.
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The Fractal Structure of a Neuron
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

So far we have been concentrating on the synapses but it is pretty 
obvious that between every pair of synapses there is at least one 
minibrot. So how many minibrots are there along a single neuron?

Lets clarify some of the ground rules which govern the structure of a 
neuron.

• Every neuron starts with a more or less straight section called 
the principal axon which leads to the principal synapse which 
has a total of N branches (including the axon), N being the 
principal order (or just 'order') of the lobe.

• The principal axon consists of an infinite series of minibrots and 
order 2 synapses.

• At the principal synapse, the principal axon branches into N – 1 
dendrites which have identical topology consisting of a 
sequence of synapses separated by minibrots.

• Between every pair of synapses on the same dendrite there are 
an infinite number of minibrots (and between every pair of 
minibrots there are an infinite number of synapses, many of 
which, being of order 2, are invisible).

• In the case of lobes with labels like 1:a:b:...z , the principal 
synapse has order z and the subsequent synapses will appear in 
reverse order terminating with a synapse of order 1.

We have seen that every axon is, in fact, attached to an infinite series 
of order 2 lobes so that what we are calling lobe 3 (or more accurately 
1:3) is in fact lobe 1:3:2:2:2:2... but let us ignore this for the moment 
and pretend that there was such a lobe as lobe 1:3. What would its 
neuron look like? My guess is that it would look something like this:
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where all the dendrites branch into 3 an infinite number of times. 
Bearing in mind that the terminus is a synapse of order 1 we can list the 
series of synapses on the neuron as 3333...1 or more compactly {3}1 
where the curly brackets indicate an infinite number of synapses.

What about neurons 1:3:5 and 1:5:3? My guesses would be:
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Note that between the principal synapse and the second synapse, 
there will be an infinite series of smaller synapses of the same order as 
the principal one (not shown).  In other words the structure of the 1:3:5 
neuron is:

((555...) 3) ((555...) 3) ((555...) 3) … 1
which we could write as:

{{5}3}1
The 1:5:3 neuron has the structure:

{{3}5}1
Since we have an infinite series of infinite series, loosely speaking 

the total number of synapses will be ∞2 which equals ∞.

Now what happens when we add another lobe of order 2. Using the 
notation introduced above the 1:3:5:2 neuron will have the 
structure{{{2}5}3}1. Now since order 2 synapses are effectively 
invisible being just straight lines, the neuron will not look significantly 
different, but if we include the order 2 synapses, the total number of 
synapses will be  ∞3. If we add a second order 2 lobe (i.e. lobe 
1:3:5:2:2) we have the fractal structure{{{{2}2}5}3}1 which contains  
∞4 synapses.

OK – so now lets go the whole hog. What structure does the neuron 
of lobe 1:3:5:2:2:2... have? I believe the answer will be:

   {{{...{{2}2}...}5}3}1
 which will contain ∞∞ synapses. Now ∞∞ is an uncountable number 
called 1א. And if there are an uncountable number of synapses, there 
must be an uncountable number of minibrots too!

I have made two outrageous claims which seem to be contradictory. 
First I said that I believe that all synapses are Misiurewicz points. Now 
a Misiurewicz point is one which jumps around for n iterations and then
enters a finite periodic cycle of period p. What this means is that Pn 
must be equal to Pn+p where Pn is the nth iterate of the function z' = z2 + c 
starting at z = 0. To make this clearer, we shall list the first few 
iterations of the starting point z = 0:
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P0: z0  =  0
P1: z1  =  c
P2: z2  =  c2 + c
P3: z3  =  (c2 + c)2 + c  =  c4 + 2 c3  + c2 + c
P4: z4  =  (c4 + 2 c3  + c2 + c)2 + c

and the  Misiurewicz point M2,1 (i.e. the value of c which produces a 
sequence with a pre-period of 2 and a period of 1) would be the root of 
the equation P3 = P2 which happens to be -2.

Now it is easy to see that if c is a  Misiurewicz point, it must be the 
root of a polynomial of finite order and hence must be a member of the 
countable algebraic numbers. This seems to be at odds with my claim 
that there are an uncountable number of order 2 synapses on any 
neuron. The solution to this puzzle is that my 'proof' that there are an 
uncountable number of synapses on the axon depends on there being an 
infinite number of order 2 lobes stacked on top of one another. This 
admits of the possibility that some of the synaptic points will be 
solutions to polynomials of infinite order. These points will not be 
algebraic and the pre-period will not be finite. Strictly speaking, these 
points are therefore not Misiurewicz points but I like to think of them as
such – only with an infinite pre-period.

But here comes another difficulty. Minibrots, almost by definition 
have finite extent. They are in fact basins of attraction. Now you can 
easily divide a line into a infinite (i.e. countable) number of finite 
segments (take a line, remove the middle third excepting the ends, 
repeat …) but you cannot divide a line into a uncountable number of 
finite segments. So how can there be an uncountable number of 
minibrots?

The solution is the same. The extent of a minibrot will be a function 
of the depth of the lobe with which it is associated. If we allow an 
infinite number of order 2 lobes, the 'last' minibrot will have zero extent.

In the last analysis, synapses and minibrots become the same – truly 
chaotic points which never repeat.
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The Antenna
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

The primary neuron of lobe 2 – the one along the X axis, often called
the 'antenna' – is, of course, special. It has order 2 so all the order 2
synapses lie along a straight line. In fact it is impossible to tell where
the synapses are; all you can see is a chain of minibrots of varying sizes.
Each of these minibrots is organised in the same way as the main one.
The principal synapse is approximately half way between the main lobe
and the largest minibrot on the axis and is shown with a red arrow in the
image below.

 This point is in fact the Misiurewicz point M3,1 i.e. it is one of the 
solutions to the equation P3 = P4. This equation  reduces to 
c3 + 2c2 + 2c + 2 = 0 whose only real solution is –1.543

In order to understand the structure of neurons better, it is useful to 
plot the behaviour of the point z = 0 for all values of c from -2 to 0.25 
along the main axon. This generates the following chaos map:
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For anyone who has played with the equation x' = Ax(1 – x) this will
be very familiar.  Reading it  from right to left,  we see that the point
where lobe 1 meets lobe 2, the function bifurcates; and again and again
through successive order 2 lobes. At a critical point (The Feigenbaum
point  x =  -1.4011551890… ) we reach the end of the series of order 2
lobes and the first order 2 synapse. Each subsequent island of stability
in the chaos map indicates the position of a  minibrot,  the largest  of
which is clearly visible in the chaos map. (For a detailed explanation of
why these basins of attraction exist and how to calculate their positions
and periodicities,  see the companion volume 'Chaos and the Logistic
Equation'.)
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Every value of c can be put into one of five categories:

Intrinsically periodic or superstable points. These are the values of
c which  cause  z to  immediately  enter  a  periodic  orbit.  These  orbits
therefore all contain the point z = 0.

There is only 1 point which maps onto itself and that is c = 0. 

There is only one point which immediately enters a cycle of period 2
which is -1. This is the centre of lobe 2. It is the other solution to the
equation P2 = P0 : c2 + c = 0 (apart from c = 0 that is.)

There are three solutions to the equation P3 = P0 : c4 + 2c3 + c2 + c = 0
namely c = –1.76, c = (–0.12 + 0.75i) and c = (–0.12 – 0.75i). The first
is in the centre of the largest minibrot on the axon and it is the most
prominent 'island of stability' in the chaos map. The other two solutions
lie in the centre of lobes 1:3 and 1:2›1. At once it becomes clear why
these  latter  lobes  have  periodicity  3.  It  also  means  that  the  largest
minibrot on the antenna has a basic periodicity of 3 too.

The next equation (P4 = P0) is too long to write out and has 8 roots of
which 2 are real, namely  c = –1.32 and  c = –1.94. The former is, of
course, the centre of lobe 2:2 but surprisingly the latter is in one of the
smaller  minibrots  near  the  end  of  the  axon.  Both  of  these  have
periodicity 4.

In general the equation Pp = P0 will have 2p roots, all of which will be
at the centre of one of the lobes on one of the countless minibrots which
litter the Mandelbrot map. Now, perhaps, you can see why there are so
many of them!

These points are powerful attractors and all the points in the vicinity
converge on them. (The reason for this can be found in the companion
volume  'Chaos  and  the  Logistic  Equation')  We  might  call  these
neighbouring points asymptotically periodic. They enter a cycle which
never repeats but gets closer and closer to a periodic cycle.

Next on our list are the Misiurewicz points – the synapses. These are
values of c where z jumps around for a while and then enter a periodic
cycle. The point Mnp makes n jumps before entering a cycle of period p.
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As an example consider the case c = –2. This goes 0, –2, 2, 2, 2 … Its
pre-period is 2 and its period is 1. It is therefore designated M2,1. As we
have seen, these points are unique solutions to a polynomial equation of
finite  order.  Now in the  companion volume 'Chaos  and the  Logistic
Equation' I showed that Misiurewicz points can never lie inside a basin
of  attraction.  What  this  means  is  that  all  Misiurewicz  points  are
unstable. If c is very close to the Misiurewicz point, z will just miss the
stable point and soon wander off to infinity. Since every Misiurewicz
point  is  one  of  the  roots  of  a  finite  equation,  they are  countable  in
number.

The fourth kind of point are the  Feigenbaum points. These are the
points which terminate the sequence of order 2 lobes which are to be
found at the end of every minibrot. It is not possible to write down an
equation for these points as they are limit values of an infinite series of
equations. We can, however, say that, like the Misiurewicz points, they
are  countable  in  number  because  there  are  a  countable  number  of
minibrots.

This still leaves us with the possibility – indeed the certainty – that
along any neuron there exist a huge number of values of c which never
cause z to enter a periodic cycle but cause it to jump about chaotically
for  ever  and  ever..  I  think  we  can  reasonably  call  them  infinite
Misiurewicz points  on  the  basis  that  they  are  really  ordinary
Misiurewicz  points  but  with  an  infinite  pre-period.  And  just  as  we
associate the finite Misiurewicz points with a particular order 2 lobe on
the axon, I think we can reasonably say that these infinite Misiurewicz
points are synapses associated with the limiting order 2 lobe.

Alternatively you could argue that these points are simply the roots
of the equation  Pp = P0 as p → ∞. On this view they are super-stable but
their period in infinite and their basin of attraction is infinitely small.

We know that these points must exist but I strongly suspect that it
will prove impossible to calculate a single one of them!
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The Shape of the Lobes
¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄

We noted  in  the  last  chapter  that  the  centres  of  all  the  lobes  of
periodicity p are solutions of the equation Pp = P0 = 0. The big question
that now arises is this: what determines the size and shape of the region
of stability round each intrinsically periodic point?  Why does lobe 1
have the shape of a cardioid and why are all the smaller lobes circular?

For example, take the superstable centre of lobe 1:2. To calculate the
superstable point we must solve the equation P2 = c2 + c = 0  and, as we
have seen, the solutions are:  c = 0 and c = –1. The first of these is, of
course, the solution to the equation P1 = P0 (because any solution with
period 1 also has period 2) but the second is the one we are looking for.
With this value of c the point z cycles through the following points :

(0, 0) → (–1, 0) → (0, 0) etc.

Now let us investigate how this cycle changes when we make small
changes in the starting point (still using c =  –1).

f 2(z , −1) = (z 2 − 1)2 − 1 = z4 − 2 z 2 (1)

The graph of the real part of this function looks has a sort of double
saddle-shape.  (The  colours  indicate  the  magnitude  of  the  imaginary
component.)
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 If we look at the vertical section along the real axis we see that it has
two prominent penduline lobes at +1 and -1.

We shall be particularly interested in the gradient of this function and
especially so at the points where f 2(z, c) = z. – i.e. where the function is
crossed by the 45° line. The gradient of the function is equal to 4z3 – 4z
or 4z(z2 + c) and it is immediately clear it has zero gradient at both the
origin and (when c = –1) the point z = –1. This is the reason why these
two points are superstable.

Now in order to investigate how big lobe 2 is, we need to vary c in
the region around (–1, 0). Suppose we move c to (–1.1, 0). This is the
graph of the (real part of the) function

f 2
(z ,−1.1) = (z2

− 1.1)
2

− 1.1 = z 4
− 2.2 z2

+ 0.11 (2)
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The penduline lobes drop a little further down and the central hump
pokes above the axis. The solutions to the equation  f 2(z,  c) =  z move
slightly sideways  and the  gradients  (shown in black)  change.  In  my
companion  book  'Chaos  and  the  Logistic  Equation'  I  showed  that,
because of  the iterative  way in which  the  equations  are  constructed,
these  two  gradients  are  always  precisely  equal.  I  also  showed  that,
where solutions are stable, the absolute value of the gradient of the  f
line must have a magnitude less than 1.

Now as c departs further and further from the superstable point, the f
curve becomes steeper and steeper and at a certain value, the gradients
at the two solutions become equal to or greater than 1. At this point, the
solutions  become  unstable  and  bifurcate.  In  the  case  of  the  f 2

Mandelbrot curve, this happens when c = –1.25. Here is the graph of the
function at this value of c.:

If  instead of  making  c,  more negative we move it  in  the positive
direction, a similar thing happens. The gradient becomes more and more
positive until it reaches the point where the curve just touches the red
line and the gradient = +1. In the case of the f 2 Mandelbrot curve, this
happens when c = –0.75. Here is the curve:
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(In fact we observe that both the period 1 and period 2 solutions have
merged which is why lobe 2 touches lobe 1 at the point (–0.75, 0))

To generalise what we have done, If we want to find the points where
any lobe bifurcates – that is to say,  if we want to find the boundary
points of any lobe, we must find the locus of all the points c around the
superstable point which are such that the modulus of the gradient of the
function f n(z, c) with respect to z must be equal to 1 at the solutions of
the equation  f n(z,  c) =  z. To be precise, in the case of lobe 2 we must
find the locus of all the values of c which satisfy these two conditions:

z4
+ 2c z 2

+ c2
+ c = z (3)

and ∣4 z3
+ 4c z∣ = 1 (4)

This is not an easy task to carry out analytically and it seems to me to
be little short of miraculous that, in spite of the complex way in which it
is generated,  lobe 1:2 is, in fact, perfectly circular4. Equally miraculous
is  that,  notwithstanding  appearances,  numerical  investigations  have
shown that none of the other lobes are exactly circular!

Nevertheless, we can now appreciate why all the lobes (except lobe
1)  are  at  least  approximately  circular.  Here  is  a  3D  picture  of  the
modulus of the gradient of the f 2 function – i.e. |4z3 + 4cz| when c = –1:

4 I have, however, managed to devise a fairly simple proof which is given in the 
appendix.
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Notice how sharp the cones are which dip down to zero at c = –1, 0
and +1. The height of the 'saddle' between the points is 2.25 so if we
were to  cut  the graph off at  a height of 1 (indicated roughly by the
height of the dotted line above the real axis) the locus of points at this
height around c = –1 would be approximately circular.

Asimilar graph showing the gradient of the  f 3 function around its
superstable point would show and even more sharply pointed cones. I
strongly suspect that of all the lobes with periodicity greater than 2, lobe
1:3 will be the most distorted and even that has an eccentricity of less
than 1%.

But what about lobe 1? Surely we must be able to do the calculations
for the simplest lobe!

Here  f 1(z, c) = z2 + c and the self-mapping points are the solutions to
the equation z2 + c = z or c = z – z2.

Now the gradient of the function  f 1(z,  c) = z2 + c is just 2z and we
know that at the boundary of the lobe, the modulus of the gradient must
be equal to 1. The fact that the gradient does not depend on c is crucial
because it allows us to say that, whatever the value of c, then modulus
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of z must be 0.5.

We now have to find the locus of all the points c such that c = z – z2

where |z| = 0.5. Substituting z = x + iy and trying to solve for c leads to
all  sorts  of  difficulties  (I  have  tried  it!)  but  a  geometrical  argument
reveals the answer easily.

The blue circle has radius 0.5. z must lie on this circle.

Squaring a complex number involves squaring the modulus and 
doubling the argument. z2 therefore has a radius of 0.25 and rotates 
round the green circle at twice the rate of z.

c is equal to the sum of z and –z2. Imagine the outer green circle 
rolling around the inner one carrying z and –z2 with it as if they were 
two linked rods. The free end will describe a cardioid and it is easy to 
see that the cusp of the cardioid will be at the point (0.25, 0) and the 
opposite pole at (–0.75, 0) which is exactly describes the shape and 
position of lobe 1!
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The Position and Size of the Lobes
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

We now know, at least in principle, why the lobes have the shape that
they do. But what determines their size and position and why are the
lobes so closely associated with the Stern-Brocot sequence?

If you look closely at the tertiary lobes on lobe 2 (illustrated below)
you  will  see  that  the  position  of  the  lobe  around  the  perimeter
corresponds exactly with the rotation number of the lobe – that is to say,
lobe 1:2:3 is 1 third of the way round the perimeter, lobe 1:2:3›2 is 2
fifths of the way round etc.5

In addition, it appears that the diameter of the lobes is closely related
to the periodicity – the smaller the periodicity, the larger the diameter
and all  lobes with the same periodicity have approximately the same
diameter.

The fundamental question is – why? What is the deep reason for all
this order and regularity?

5 I have not seen a proof of this statement but neither have I seen any evidence to 
contradict it.
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The frank answer is – I do not know. Of course, there is a reason and,
no doubt, any competent mathematician could prove that, for example,
the lobe 1/3rd of the way round the lobe will have a periodicity of 3 – but
this is  not quite the same as explaining why this simple relation holds.

On page  51 I explained the reason why bifurcation occurs between
lobe 1 and lobe 2 when the gradient of the f function reaches ±1. There
we restricted ourselves to the real axis.  If,  however,  we consider the
behaviour of z in the complex plane, we can find that 'bifircation' is not
the only option. In fact, every point on the perimeter of any lobe is a
'fircation'  point.  You can see how this  happens by tracing 100 or  so
iteration of z when c is very close to the edge of a lobe and near to one
of the major lobes.

In each case you can see how  z nearly becomes periodic but not
quite. When c is close to lobe 4, z tries to home in on a square but each
square is slightly skewed. It is clear that, in the limit, z repeatedly takes
a  step,  then  turns  through  an  angle  (basically  equal  to  the  rotation
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number). If the angle is an exact fraction (q/p) of a circle, the result will
be  a  polygon  with  p sides  and  step  size  q!  This  explains  why  the
periodicity and step size is closely related to the position of the lobe
and, because of the special properties of the Stern-Brocot tree, why the
lobes  can be organised  into  sequences  whose  rotation numbers  obey
Farey addition.

The only thing that remains to be explained is why the diameter of
the lobes is inversely related to the periodicity.

The illustration below maps out the solutions to the equations P2 = 0,
P3 = 0, P4 = 0 and some of the solutions to P5 = 0::

There  are  2  solutions  of  periodicity  2  (shown  in  yellow),  4  of
periodicity 3 (green), 7 of periodicity 4 (blue) and 15 of periodicity 5
(orange) of which 5 are shown. (The solutions with a red ring are not
lobe centres, they are the centres of minibrots. Obviously the larger the
periodicity, the greater the number of solutions and hence the greater the
number of lobes with that periodicity. Of necessity, then, the larger the
periodicity the smaller the lobes will have to be.

A remarkable  example  of  this  is  illustrated  by  the  construction
known as Ford circles. 
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Draw a base line and on it draw two touching unit circles.

Now draw a the largest circle possible in the interstice. You will find
that it has a diameter ¼ of the diameter of the unit circles and, of course,
it is positioned half way between them.

Now draw two more circles in the interstices; amazingly these circles
have a diameter of 1/9 and are positioned at 1/3 and 2/3.

When you come to do the next circles, you will find that the four
interstices are not all the same size and there are only 2 places where
you can fir a circle of diameter 1/16. But, remarkably, and in spite of the
fact that the interstices are not all the same shape, there are four places
where you can fit a circle of diameter 1/25. In fact, every time you come
to a prime number  p the circles seem to know that all the interstices
must be exactly the right shape to admit the addition of p – 1 circles of
diameter 1/p2. 6

Carry on ad infinitum. This is the astonishing result:

Look closely at the fractions which I have written in the circles. Each
fraction is the Farey sum of the two circles above it and the whole nest
of circles forms a Stern-Brocot tree!

Remove the two unit circles and bend the whole thing round a circle
and this is what you get:

6 Many proofs of this theorem can be found on the internet.
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a Mandelbrot lobe complete with all its tertiary lobes!
One last question remains. Why are the angles of the secondary lobes

on lobe 1 not equal to the rotation number? Lobe 3 is not 1 third of the
way round – it is at the top, more like one quarter of the way round.

Well, as we have seem, lobe 1 is a bit of an exception. It is a cardioid,
not a circle. When we bend the Ford circles round a cardioid, we have to
distort the distances to accommodate. Look at the diagram opposite. The
rotation number of the lobe determines the angle of z not c.7 As z rotates
round from 0 to ½, c lags behind. When the rotation number is 1/3, z is
at 120° to the axis but the angle which c makes is only a little over 90°
putting lobe 3 nearly (but not quite) at the top.

7 Again, I have not seen a proof of this statement but I have no reason to suppose 
that it is not true. On the other hand, nothing should be taken as true in 
mathematics until it is formally proved so it should be born in mind that all my 
statements regarding the positions of the lobes around the perimeter of lobes 1 and 
2 may not be absolutely accurate.
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So every point on the boundary of a lobe which is associated with a
rational  fraction  of  the  whole  is  a  'fircation'  point  and  has  a  lobe
attached whose periodicity is equal to the denominator of the fraction.

All well and good. But what about the irrational points? Or even the
transcendental points? What happens there?

The  simple  answer  is  that  when  c equals  one  of  these  points,  z
wanders about chaotically. I shall call these points aperiodic fircation
points. Obviously there are an uncountable number of them around the
perimeter of every lobe.

On page  47 I discussed the possibility that on every neuron there
were  infinite  Misiurewicz points which were similarly aperiodic but
which  were  impossible  to  calculate.  Aperiodic  fircation points  are
similar but unlike the Misiurwicz points, we can easily name some of
them. Those on the cardioid are of the form cos(t) – cos(2t) + i (sin(t) –
sin(2t) where t is any irrational number. Likewise all the points on the
perimeter of lobe 2 have the form 1 – 0.25 cos(t) + i sin(t) and all those
points where t is irrational will be aperiodic8.

8 But see the footnote on the previous page.
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Minibrots
¯¯¯¯¯¯¯¯¯¯¯¯

It  was noted in  the previous chapter that there are  potentially 2p-1

solutions  to  the  equation  Pp =  0  (although  many  of  them  will  be
duplicated  or  degenerate).  All  of  these  solutions  will  be  centres  of
attraction but there are far more of them than there are lobes on the main
brot. The other solutions lie at the centres of the numerous minibrots
which litter the map.

The largest minibrot on the antenna has period 3.  There are three
minibrots of period 4: one on the antenna and two others in the neurons
attached to lobes 1:3 and 1:2›1.

I  believe  that  there  are  15  different  solutions  of  periodicity  5  of
which 5 are accounted for on the main brot including the one at the
origin (See the diagram on page 56). That leaves 10 minibrots. Two of
then are on the antenna at  c = – 1.626 and – 1.861. I challenge you to
find the other 8!

Naturally,  the  periodicity  of  any  lobe  on  a  minibrot  will  be  the
product of its basic periodicity and the periodicity of the minibrot. This
means that no lobe on a minibrot can have a periodicity  p which is a
prime number. Alternatively we can say that the only basins of attraction
with prime periodicities are either secondary lobes on the main cardioid
or the main cardioid of a minibrot.

Now what can we say about the periodicity of all the other minibrots
on a neuron? First we shall consider the principal dendritic minibrot i.e.
the largest minibrot beyond beyond the principal synapse on each of the
dendrites  and  also  some  of  the  other  dendritic  minibrots  which  lie
between the principal one and the synapse.  

Here is a short list with their periodicities (in clockwise order):
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Lobe
Periodicity

of
main lobe

Periodicity of
the principal

dendritic minibrot
on each dendrite

Periodicity of
the largest

dendritic minibrot
between

the principal
dendritic minibrot
and the synapse

1:2 2 3 5

1:3 3 4, 5 7, 8

1:4 4 5, 6, 7 9, 10, 11

1:5 5 6, 7, 8, 9 11, 12, 13, 14

1:3›2 5 8, 6, 9, 7 13, 11, 14, 12

The pattern is pretty clear. The periodicities of the largest minibrot
simply carry on from the periodicity of the main lobe. Not surprisingly,
the order of the minibrots in the last case steps round 2 at a time.

The last column lists the periodicities of the next largest minibrot as
you  step  back  along  the  dendrite  towards  the  principal  synapse.  Its
periodicity increases by the order of the synapse. Indeed, between the
period 5 minibrot on the neuron of lobe 4 and its principal synapse you
will find minibrots of periodicity 9, 13, 17 etc.

Now  turn  your  attention  to  the  minibrots  beyond  the  principal
dendritic minibrot and you will discover another remarkable sequence.
The periodicities increase by 1 each time. Why should this be? I believe
it is because we are heading towards a synapse of order 1 – the terminal
synapse.  Indeed,  I  strongly  suspect  that,  starting  at  any  dendritic
minibrot of periodicity p in one of the neurons of the secondary lobes
and moving towards a synapse of order  o you will find a sequence of
minibrots of periodicity p + no.

Surprisingly,  this  rule  does  not  hold  for  dendritic  minibrots  on
tertiary lobes. For example, consider the neuron attached to lobe 1:2:3.
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It should be no surprise to find that the periodicity of its two principal
dendritic  minibrots  are  8  and  10  and  that  the  periodicities  of  the
sequence of minibrots between them and the principal synapse increases
by 6 each step.

Now if  the  rule  held  for  minibrots  beyond the  principal  dendritic
minibrot, we would expect to find minibrots of periodicity 10, 12, 14
etc. but, unexpectedly, one of these minibrots has periodicity 5. (If you
were having trouble finding the last pair of minibrots with periodicity 5
then here they are!) 

What do these minibrots look like and how can we determine their
periodicities?  Below are images of the principal dendritic minibrots in
the neurons of lobes 1:3 and 1:5. The most obvious thing about them is
that, in addition to the synapses characteristic of the lobe to which the
neuron is attached, every neuron has multiple synapses whose order is
equal to the order of the neuron on which the minibrot is situated.

   
1:3                                             1:5

 Unfortunately, there does not seem to be a way of determining the
periodicity of the minibrot just by examining its neurons. The only way
to do it is to trace the orbit of z for a while and then cont the number of
iterations  before  it  returns  close  to  a  previous  value.  (This  is  the
algorithm used by  the author's program 'Mandelbrot Explorer'.)
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This just leaves the minibrots on the axon. The largest is called the
principal axonal minibrot.

Here are images of the principal axonal minibrots on the axons of
lobes 1:2, 1:3, 1:5 and 1:3›2:

   
1:2                                             1:3

   
1:3›2                                                1:5

You  will  immediately  notice  that  every  neuron  has  a  prominent
synapse equal to the order of the main lobe to which the minibrot is
linked. As we have seen this tells us the order of this lobe but it does not
tell us the periodicity of the minibrot.
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 It turns out that the periodicity of these four minibrots is 6, 9, 15 and
15 respectively. Further investigation confirms that the periodicity of the
principal  axonal  minibrot  is  always  3 times  the order  of  the lobe  to
which it is attached.

  (Note that the principal axonal minibrot on the antenna is  not the
largest  minibrot.  The  largest  minibrot  on  the  axon  is  the  principal
dendritic minibrot  and  has  periodicity  3  (=  2  +  1);  the  former  has
periodicity 6 (= 2 × 3)) .

As you would expect, as we move towards the principal synapse, you
will find a sequence of minibrots whose periodicities increase in steps
equal to the order of the synapse.

Moving  in  the  other  direction  (i.e.  towards  the  lobe  itself)  the
periodicities are always multiples of the periodicity of the lobe but I
cannot discern an obvious pattern in their order.

In summary, here is a diagrammatic  list of the periodicities of some
of the larger minibrots in the neuron attached to lobe 1:3.
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Principal Synapses
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

That's enough theory: let's have some fun. But where shall we start
looking  for  some  interesting  features?  Let's  start  with  the  principal
synapses. Here are close views of the principal synapse of lobes 6 and
3›29 which we might call the 'snowflake synapse' and the 'peacock's tail
synapse'.
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All synapses are self-similar – that is to say, they look exactly the 
same however much you magnify them –  because they are Misiurewicz
points. You will, however, notice that on the arms of the synapse, there 
appear to be synapses with twice as many arms. These are not real 
synapses though and if you magnify them sufficiently you will find a 
minibrot at the bottom with two genuine synapses, one on each side. A 
simple order 3 example is shown on page 25. Here is a more complex 
example. Can you identify which lobe it is on?9

The main neuron always passes through the minibrot along its axis 
and there are 2 synapses on each side. If the order of the lobe is N, each 
of these synapses will contribute N – 1 dendrites which, together with 
the ingoing and outgoing axon make a total of 2(N – 1) + 2 = 2N arms. 
We can now see why, from a distance, this can look like a synapse with 

9 Lobe 2:11
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twice as many arms.

The details of these 'eyes' are infinitely varied and the source of 
many published images. Here is a close up of one of the 'eyes' of the 
principal synapse of lobe 3›29.

You can tell that the eye is on the main axon because the main axis 
passes straight through the minibrot. You can tell that the lobe is a 
primary lobe because the dendrites terminate in single spirals. You can 
tell that the order of the lobe is 21 because of the number of branches on
each of the side synapses and you can tell that it is not lobe 21 because 
the dendrites form two groups, but whether it is on lobe  3›29 or lobe 
5›44 which also has order 21 is more difficult to determine.
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Spiral Synapses
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

To find a spiral synapses with, say, 6 arms we need to look at the
tertiary lobes  of lobe number 6.  This one is  on lobe 1:6:5.  The first
image is a smooth image while the second is exactly the same location
but alternate levels are picked out in green. The smooth areas between
the spiral arms in the first image are revealed as huge roots which spiral
down into infinite depths.
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Compare that with the spiral synapse on lobe 1:2:6:5 which has order
2 spiral synapses tacked onto every branch.

As with principal synapses, it is the 'eyes' of the synapse which hold 
the greatest interest. Typically, each eye is bounded on each side by a 
spiral synapse of its own. The eyes increase in complexity as you go 
further down the main spiral.
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Here is the spiral synapse of lobe 1:3:5 and a close up of one of its 
eyes. 

 

This is a pair of images from lobe 1:2:11. The 'eyes' here have lovely 
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side spirals of order 2:
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Dendritic Structures
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

The image below is lobe 1:2:6 on the largest of the minibrots on the
principal axis.  You can tell  that it  is  lobe 6 because of the principal
synapse of order 6 and you can tell that it is on lobe 1:2:6 because of the
order 2 spiral synapse. It is the long tendrils which tell you that this is
not on the main brot but on one of the axonal minibrots.

 and here is a diamond brooch in one of the tendrils.
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at whose centre we may find another brooch

and a lovely ring!

 

Moreover, there are other gems waiting to be discovered elsewhere 
inside this structure.
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 For example, here is a beautiful spiral galaxy...

and here is an alien octopoid which I found at random.

The magnification of this image was 53 trillion (5.3 × 1013). On this
scale the whole map would be bigger than our galaxy!
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Axonal Structures
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Because of the fact that axons consist only of synapses of order 2, 
structures on or near the axon of any neuron have a special symmetry. 
Let's have a look at the structures along the axon of the antenna.

It is difficult to see where the principal synapse is because all the 
synapses have order 2 and are perfectly straight but I believe it to be 
where I have drawn the arrow in the diagram on page 44.

All along the axon there are side 'sprouts' and at every point where 
the sprouts cross the axon there is a minibrot. It is easy to verify that 
these sprouts are the neurons of lobes 1:3 and 1:2›1 on each side.

The next most prominent sprouts emerge at 45 degrees and come 
from lobes 1:4 and 1:2:3 (not 1:3›2 as you might expect).

As you look at smaller and smaller minibrots, the surroundings of the
minibrot become more and more symmetrical with rotational symmetry 
based on a binary division of the circle (i.e. 2, 4, 8 etc.).
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A particularly interesting series of cauliflower structures can be 
found as you move along the axis towards the cleft of the largest 
minibrot and some lovely  patterns can be found within the petals, all 
containing minibrots of their own. 
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Asymmetrical Features
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

While it is natural to want to zoom in on those features like minibrots
and spirals which have a high degree of symmetry, it is worth seeking
out places with other attractions. There is, for example, the procession
of circus elephants which can be found in 'elephant valley' – the cusp of
the cardioid:

or the butterfly wings which can be found on the edge of lobe 4:
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Another favourite image of mine is the dragons head on lobe 1:2:9:

or is it a baroque wall bracket for a candle?

And what about the fire-breathing dragons of lobe 1:2:2?
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Delving Deeper
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

I have already noted that, unlike Julia sets, the Mandelbrot map is not
self-similar. The deeper you go you will find new structures appearing. 
It is, however, not easy to know where to start delving in search of new 
structures. It is all too tempting to zoom into a spiral synapse, for 
example, hoping to find something new only to find that it goes on for 
ever and ever. Or you might zoom into a minibrot only to be 
disappointed when you only find elephants and sea horse there. Mind 
you, the elephants and seahorses are not quite the same. These are to be 
found in the principal minibrot of lobe 3:

     
You will notice that they have both sprouted 'hair' with characteristic

order  3  synapses.  In  addition,  the  'hair'  is  decorated  with  beautiful
brooches similar to but not the same as the ones that we found on the
minibrots on the main axon.

If you choose any minibrot in one of the seahorses in seahorse valley
(eg  lobe  3›23) and  then  examine  its  elephants  you  will  discover
something like this:
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The elephants are surrounded by a swarm of seahorses!

I  will  leave  you  with  the  challenge  of  finding  and  naming  the
structure below:

f
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Appendix
¯¯¯¯¯¯¯¯¯¯¯

The Stern-Brocot tree theorem.

Every fraction  p/q in the Stern-Brocot tree has two parent fractions
a/b and c/d. Look closely and you will see that there is a simple relation
between a, b, c and d namely

ad − bc = ±1 (5)
It is easy to prove that this is always the case. Suppose that

a
b

 ¤ 
c
d

=
p
q

(6)

where p = a + c and q = b + d (7)

We shall now show that the same relation holds between a/b and p/q.
aq − bp = a (b + d ) − b(a + c)

= ab + ad − ab − bc = 1
(8)

What this means is that for any pair of fractions for which equation
(5) holds, the same relation will hold for all of its children.

Now since the relation holds for the two starting fractions 1/1 and
0/1, it must hold for all pairs of parental fractions in the tree.

Suppose we wish to find the two parents a/b and c/d for any fraction
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p/q where p and q are co-prime.

We know from (5) that
aq − bp = 1 (9)

hence a =
1 + bp

q
(10)

Now (1 + bp) must be a whole multiple of q and this multiple a must
be less that p (because a + c = p). For example, if p/q = 5/13, then we
are looking for a number in the sequence 6, 11, 16, 21 etc. which is a
multiple of 13. In fact the next number in the sequence, the 5 th, is the
one we are looking for – 26. This means that  a = 2 and  b = 5 from
which it is easy to show that c = 3 and d = 8.

OK so the  procedure  worked for  5/13 but  will  it  work  for  every
fraction?

The  problem  boils  down  to  the  famous  stepping  stone  problem.
Suppose we put q stepping stones in a circle (13 in this case) labelled 0
to q – 1. Starting from stone number 1, repeatedly jump p steps at a time
(in this case 5). Will you ever reach stone number 0 and if so, How
many jumps will it take?

Well if p and q are co-prime it is easy to see that you will visit every
stone once and once only in a unique cycle before returning to your
starting point. What is more, you are bound to reach stone number 0 in
less  than  q jumps.  In  other  words,  the  procedure  will  always  find
number b (< q) and a (< p) which will satisfy equation (9)

We have now proved that for every fraction p/q there exists a parent
a/b where a and b are less than p and q. But a/b must have a parent too
– and it must have a parent as well. Eventually we must reach either 1/1
or 0/1. And this essentially implies that every fraction must appear in
the tree somewhere!
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Proof that lobe 2 is circular

As stated on page 51 we require that

z4
+ 2c z 2

+ c2
+ c = z (11)

and ∣4 z3
+ 4 c z∣ = 1 (12)

Equation (11) is the general requirement for all points z which have a
cycle of period 2 for any value of  c. Equation (12) is the requirement
that the gradient of the f function should be ±1.

It is not easy to solve equation (11) in terms of  z so lets solve it in
terms of c. Fortunately, this simplifies quite a lot and we find that

either c = − (z2
− z ) (13)

or c = − (z2
+ z + 1) (14)

It turns out that equation (13) refers to the solutions appropriate to
lobe 1. It is equation (14) which refers to lobe 2.

Solving this equation for z gives us

z = (−1 ±√1 − 4(1 + c))/2 (15)
which we shall write for convenience as

z = (−1 ±√ X )/2 (16)

Now equation (12) can be rewritten as

∣4 z (z2
+ c)∣ = 1 (17)

and using equation (14) we can eliminate c to get
∣4 z (z + 1)∣ = 1 (18)

Substituting (15) into (17) we get

∣4(−1 ±√ X
2 )(−1 ±√ X

2
+ 1)∣ = 1 (19)

which eventually leads to
∣(1 + c )∣ = 0.25 (20)

Now if the modulus of 1 +  c is 0.25 then the locus of  c must be a
circle of radius 0.25 centred on the point (-1, 0).
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Most of the illustrations in this book were generated using

programs written by the author, many of which are

available on his website: www.jolinton.co.uk.
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