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Preface
This book is written for anyone who has studied a bit of Mathematics and has a 

working knowledge of basic algebra. It is ideally suited to A level students of 
Physics and/or Maths and the intention is to explain the theories of Special and 
General Relativity as far as is possible using concepts and language appropriate to 
that level of knowledge.

Books on Relativity generally fall into two camps. There are, of course, many 
undergraduate level text books which take the reader the whole way from simple 
concepts such as time dilation right through to Minkowsky diagrams and tensor 
theory. There are also a great number of books which try to explain Relativity 
without using a single equation (or perhaps just one!) . Regrettably, many of these 
over-simple and some are, frankly, wrong.  As Einstein himself said, 'you should 
explain your theories as simply as possible - but not more so.' For the 
mathematically literate student and general reader, neither of these approaches fit 
the bill. This little book is an attempt to fill the gap by explaining Einstein's 
theories using plenty of simple algebra and numerical examples but without 
introducing any mathematical techniques beyond some very simple calculus 
(which can. of course, be ignored if necessary).

So how much is it possible to achieve using just A level ideas? The answer is 
quite a lot. The fundamental theorem of special relativity (time dilation) requires 
nothing more than Pythagoras' theorem and the remaining theorems require as 
much mental agility as algebraic competence. All the proofs given have been 
chosen carefully and the proofs of the 1g rocket problem and the addition of 
velocities are new in the sense that I have not seen them proved this way 
elsewhere. The approach to the famous equation E = mc2 is also slightly novel and 
avoids the complications of quantum theory which is a very unsatisfactory feature 
of any proof which relies on the behaviour of a photon in a box. At each stage in 
the argument I have been careful to show how the relativistic expressions reduce 
to Newtonian ones when v is much less than c.

When it comes to General Relativity, one can really only get as far as 
Einstein's 1911 paper in which he describes the bending of light and gravitational 
time dilation. The extra effects due to the distortion of space and time revealed in 
the full theory which appeared in 1917 lie beyond my competence. Nevertheless, it 
is possible to calculate some of the predicted properties of those extraordinary 
objects known as black holes and even to start to discuss the numerical properties 
of the universe as a whole.

There is a story about Sir Arthur Eddington who wrote many books explaining 
and popularising Einstein's theories. A journalist once remarked to him that he was 
one of only three people in the world who really understood the General Theory of 
Relativity. Eddington was silent. When asked why he did not say anything he 
replied "I was just wondering who the third person might be."
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In the century that has passed since Einstein's first publication the scientific 
world has gradually come to an acceptance that the General Theory of Relativity – 
at least on a large scale – is the way the world works and its predictions have now 
been verified countless times to an amazingly high degree of accuracy. But as to 
the number of people who really understand it, you can probably still  list their 
names on a single sheet of paper – and you won't find my name on the list! On the 
other hand, the basic ideas of Relativity and some of its bizarre consequences 
including the existence of Black Holes have become common knowledge and 
anybody with an inquiring mind will want to know something about how these 
claims are justified.

If you find the sheer number of equations and formulae in this book a bit 
daunting, it is well to remember that, as Galileo said, the the Book of Nature is 
written in the language of Mathematics and if we are to understand the world we 
live in, we must accept that fact and continue to practice our facility with that 
language even when we have left our formal mathematical education behind. 
Besides – equations have an important property which, like other theorems which 
occur in this book, is so important I shall put it into a colourful box:

The Fundamental Principle of Reading Mathematical  
Books
All mathematical equations can be admired or ignored as required. All  
that you need is confidence in their veracity.

A mathematical proof is like the Title Deed to a house. It is very important that 
the Deed exists and that it is kept somewhere safe. When you first buy a house, 
you might be curious enough to glance through it to see what it says but you are 
unlikely to understand much of the legal language it is written in; nevertheless, 
you have employed a good solicitor to make sure that it is in order and you can, at 
least, admire the fancy paper it is written on.

I urge you to regard the equations and proofs in this book in the same way. 
Have a glance through them; try to get to grips with a few of them but don't think 
you have to understand every equation – just sit back and admire them. Do take 
the trouble to get your calculator out and verify some of the figures though 
otherwise you may find them difficult to believe. Then when you have finished the 
book you can put it in a safe place in your bedroom and go to sleep in the 
comfortable knowledge that even if you still can't really believe that clocks in 
motion go slow and that penny's bend when they accelerate, the proofs are quietly 
sitting there on your shelf so it must be true after all.
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The initial climb up
Let me take you on a roller coaster ride through Relativity. You will see many 

strange sights along the ride and hear many strange stories - many of which you 
will find hard to believe. But at the end of the ride, you will be able to look at the 
world about you and the stars above with a new and altogether deeper 
understanding. Have you got your ticket? Then let's get going . . .

Together we climb into the train and sit down. There is a clanging of bells and 
with a tremendous jerk, we are on our way.

'There's not much to hang on to', you say.

No, you're right there. In front of us there is absolutely nothing except what 
looks like a single gear stick with a black knob on the end. On the knob there is 
some writing engraved in white which says simply: 'The Fundamental Principle of 
Special Relativity'.

That's all there is, I am afraid, and you have to hang on to it like glue. If ever 
you let go of this Principle, you are lost. The Principle itself is seemingly 
innocuous, almost self evident, and yet Einstein showed that it leads to an amazing 
series of almost incredible consequences. While the roller coaster climbs to the top 
of the first hill, let me tell you what this wonderful Principle is

The Fundamental Principle of Special Relativity
The laws of Physics are identical for all observers in relative (uniform)  
motion with respect to each other

'Is that it?' you ask. 'I thought that was obvious'. 

Well, yes, it is. After all, when you pour a cup of tea from a tea pot into a cup, 
it doesn‘t matter if you, the cup and the teapot are all hurtling down a (straight) 
railway line at a (constant) speed of 125 mph in a railway carriage. Nor does it 
matter that the whole train and indeed the whole Earth is hurtling round the sun at 
an (almost constant) speed of 30 km s-1, nor does it matter that the whole solar 
system is hurtling round the galaxy even faster than that! The laws of physics 
which govern the way the tea falls are just the same. Nor would you expect 
calculators to give different answers or musical instruments to make different 
sounds just because they were moving. Surely all the laws of physics are the same 
whether you are moving or not.

We can restate our Principle in an equivalent form like this:
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It is impossible to carry out any experiment inside a closed laboratory  
which will detect whether or not the laboratory is moving. Absolute  
motion is meaningless, only relative motion can be measured.

Sounds very plausible, doesn't it?

'Sounds pretty obvious to me.'

I agree. But there is, perhaps, one way in which you just might be able to tell if 
you were moving or not. What if you were to measure the speed of light travelling 
in different directions? Suppose that you discovered that the speed of light 
measured in one direction was greater than the speed of light travelling in the 
opposite direction? What would you infer then? Surely it would be reasonable to 
suppose that your laboratory was in fact moving through space and in one 
direction the speed of light and the speed of the lab were adding together while in 
the other direction the two speeds were subtracting.

It is actually very difficult to do this experiment because you have to measure 
the speed of light very accurately but eventually, as we shall see later, a suitable 
experiment was performed by two physicists called Michelson and Morley, but the 
results were disappointing. The speed of light seemed to be constant in all 
directions.

While most scientists tried to explain this result away by means of various 
subterfuges, Albert Einstein merely accepted it as a necessary consequence of the 
Fundamental Principle namely:

The speed of light in a vacuum is a universal constant and will always  
be the same even when measured by different observers in relative  
motion.

(It is worth noting that Einstein was not aware of the results of the Michelson-
Morley experiment when he first worked on the theory of Special Relativity. 
Einstein - like Galileo, Newton and Maxwell - was one of those geniuses who did 
not really need to rely on experimental evidence to point the way forward. He just 
knew his theory was right!) 

We have now cranked our way to the top of the first hill. Let's pause a minute 
and take a last look around at our cosily familiar world. Far below you can see 
your twin brother thumbing through what looks like a travel brochure. Later we 
will discover that he is planning a short holiday on Alpha Centauri. Away to your 
right you can see some workmen doing some maintenance on a large clock which 
towers over the rifle range. Studying the behaviour of the bullets will tell us 
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something remarkable about how speeds add together. The shrieks of the children 
riding the Ghost Train catches your attention and you watch for a moment as the 
long train rushes into a tunnel. You notice the rear of the train vanish into the 
tunnel at the precise instant that the engine begins to emerge from the other end. A 
detailed consideration of this circumstance will turn everything we thought we 
knew about  time on its head. Down below you notice some children playing 
shove-halfpenny on a cracked old table and two boys tossing a couple of footballs. 
In the distance you can see a fast flowing river. Wait a minute - a race is about to 
begin...

The River Race
Two friends, Albert and Beatrice if you like, have agreed to a rowing race on a 

fast flowing river. Albert is going to row 100m directly across the river and back 
again. He knows that in order to proceed at right angles to the flow he will have to 
aim upriver a bit and this will slow him down on both halves on the race, but he 
doesn't think he will be slowed down too much. Beatrice is planning to row to 
point B 100 m upstream and back again. She knows that it will be hard work 
rowing up stream but she reckons that she will be assisted just as much on the way 
home as she is hindered on the way out and that she will win the race overall.

Who do you think will win the race?

You watch. As expected, Albert makes steady progress across the river and 
easily beats Beatrice, who is pulling hard upstream, to the first turn around point. 
But when Beatrice eventually reaches her turn-around the excitement and the 
cheering begins to mount because the current is rapidly carrying her back to the 
start while poor Albert is still struggling across the river. Nevertheless, Albert has 
gained too much of a head start and in spite of the assistance of the current, 
Beatrice cannot make up the lost ground and loses the race.
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Why is this? Let’s work it out using some typical figures.

If we assume that the river is flowing at 1 ms-1 and that both rowers row at 2 
ms-1 through the water, it is easy to use Pythagoras' theorem to see that Albert will 
move across the river at a resultant speed of 22−12 = 3 ms-1 and that he 
will complete the race in 115 s.

Beatrice, on the other hand takes 100 s to get to the turning point (travelling at 
an effective speed of 2 - 1 = 1 ms-1) and in spite of the assistance of the stream, she 
cannot make it back in time to win the race because even at a speed of  2 + 1 = 3 
ms-1, the return journey takes her 33s.

The difference in journey times is due to the different geometries of the two 
paths and of course it depends on the speed of the river. It is worth pointing out 
that if the river was flowing at 2 ms-1, the same speed that Albert and Beatrice can 
row, neither rower would complete the race at all but it turns out that at speeds less 
than 2 ms-1, Albert always wins.

What is the significance of this pretty little story? Well in 1887 a famous 
attempt to measure the speed of the Earth through the supposed æther was made 
by Michelson and Morley using a device called an interferometer. The apparatus 
looked (schematically) something like this:

Light from a monochromatic light source is split by a half silvered mirror into 
two beams which travel out to two distant mirrors A and B (just like the two 
rowers Albert and Beatrice). When they return, the same half silvered mirror 
recombines the two beams into one again. If the two arms are of exactly equal 
lengths (and if the Earth is stationary) the two light beams will take exactly the 
same time to get to the mirror and back and will therefore arrive back exactly in 
phase and will interfere constructively (i.e. they will produce a strong interference 
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fringe). If the Earth is moving, however, according to the æther theory of light, the 
beam which is travelling parallel to the direction of the Earth's motion through 
space will be delayed with respect to the other beam and the fringe pattern will 
shift, perhaps showing destructive interference instead of constructive interference. 
In order to eliminate the effect due to the inevitable slight difference in arm 
lengths, the whole apparatus was designed to be rotated slowly through 90° at a 
time.

Now the Earth moves round the Sun at about 30 km s-1 - that is about 0.01% of 
the speed of light. This makes the calculations a bit difficult because the important 
figures occur in the 10th decimal place and your calculator may not be accurate 
enough - but the result nonetheless is that Michelson and Morley expected to see a 
fringe shift of about ± half a wavelength. Not much, but easily detectable all the 
same.

Well, what did they see? They looked for a whole year and found precisely - 
nothing. No fringe shift at all. Whichever way you looked at it the experiment was 
either a triumphant failure or a dismal success - for it seemed to indicate that Earth 
wasn't moving at all!

Various theories were put forward to explain the result. It seemed incredible 
that the Earth was the only thing in the Universe with zero speed, so perhaps the 
Earth 'dragged' the æther around with it, or perhaps the arms of the apparatus 
changed in length according to how they were moving.

None of these are correct. The truth of the matter is, of course, that the result of 
the experiment does not need explaining! It is simply a fundamental fact about the 
universe we live in. The speed of light in a vacuum is a fundamental constant and 
will always be the same even when measured by observers in relative motion.

'I don't have a problem with that.'

You will.

'Why?'

The problems all arise when you consider measurement made of the speed of 
light by two different observers who are in relative motion. The first thing you will 
have to accept is:

Bizarre Consequence Number 1
Moving clocks run slow

The roller coaster gives a violent jerk and suddenly you are accelerating 
rapidly down the long descent. 'Hang on to that Principle' I shout as your arms flail 
around wildly trying to find something to grab hold of. As we gather speed I 
glance at the clock tower and note with satisfaction that the hands of the clock 
above the rifle range are not moving quite as fast as they were...
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Chapter 1 - Time Dilation
The simplest possible clock is a beam of light bouncing backwards and 

forwards between two parallel mirrors. If the mirrors are separated by a distance l, 
the time for each 'tick' (i.e. there and back) is t = 2 l /c (Of course you 
remember that speed = distance over time and that time is distance over speed) It 
would be perfectly possible for an electronic circuit to count the number of ticks 
and provide a suitable display in hours, minutes and seconds. (I do not know if 
anyone has ever made such a clock. If the arm of the clock was 1 metre long, it 
would ‘tick’ at a rate of  6.7 GHz. This is not a lot faster than the clock speed of 
your average PC.)

Now suppose you are watching such a light clock passing by in a spaceship 
travelling at a sizeable fraction of the speed of light v. (Of course you can't see the 
light beam but you can imagine it!) The arm of the clock is at right angles to the 
direction of motion of the ship so you have no difficulty in verifying that the arm 
has a length l as the ship goes by. On the other hand, you can see (imagine!) the 
light beam moving in a diagonal line like this:

d

v

c

Now because of the Fundamental Principle, you see the light beam moving at 
the normal speed of light. This means that it is going to take longer for it to travel 
the distance l and back again just like Albert on the river (albeit for a slightly 
different reason). In fact the effective velocity across the ship is c 2−v 2 and the 

time taken for the return trip is t = 2 l
 c2−v2

This means that the clocks on board the ship (and everything else as well) 

appear to me to run slow by a factor of
c

 c2−v2 or, as it is more usually written

1
1−v 2/c2 . This factor is often called γ (the greek letter gamma) and is always 

greater than one. It rises to ∞ – as v gets closer and closer towards c.

We can summarise what we have derived so far as follows. If it takes T0 

seconds to boil an egg, it will appear to me that the eggs in the spaceship take T 
seconds where: 
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T =
T 0

1−v2/c2
= T 0

Let's put some figures into the formula and see what we get:

v (as a % of c) 
50 1.15
60 1.25
70 1.40
80 1.67
90 2.29
95 3.20
96 3.57
97 4.11
98 5.03
99 7.09

If we plot a graph of these figures we get this:
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What this means is that if you travel at 50% of the speed of light, your clocks 
go 15% slower than clocks which are stationary. Travel at 80% of the speed of 
light and your clocks are 67% slower (ie at 3/5 of the rate of a stationary clock). 
Travel at 99% of the speed of light and every second of your time takes over 7 
seconds of 'stationary clock' time!

'That’s just ridiculous!' You say.

'I mean, what would it be like to live in a world in which all the clocks went 7  
times slower than normal? It would be a crazy world! Everything would appear to  
be slowed down! Cars would crawl along at 10 miles per hour. A game of football  
would take all day! A falling stone would appear to fall like a feather!'

Hang on a minute, you are not thinking quite straight. If the clocks go 7 times 
slower, ...

'Oh! I see what you mean': you interrupt. 'If the clocks go slower, stones will  
actually take 7 times fewer seconds to fall so everything will actually look as if it  
is happening faster! Is that it?'

No, no, that's not right either! The point is that it is not just clocks which go 
slow - everything goes slow, you might say that time itself goes slow. When you 
watch a falling stone and time it with a stop watch, the stone falls slowly, the clock 
ticks slowly and your own mental processes think slowly as well. When the stone 
reaches the ground, the clock reads exactly what you expect it to read and the 
process seems to have taken exactly the same time as usual. In short, the whole 
process looks perfectly normal to you. In fact it doesn't just look perfectly normal 
to you, it is perfectly normal to you. You must remember that time is only dilated 
(ie stretched) from the point of view of someone else who is moving with respect 
to you. In your moving spaceship, everything looks normal to you. It is only me, 
on stationary Earth who sees your clocks going slow and your stones falling like 
feathers and your eggs which take ages to boil!

After a moment's thought you exclaim: 'That can't be right! and what's more, I  
can prove it!'

Go on then.

'Well you say that the clocks in the space ship appear to go slow because the  
spaceship is moving and you are stationary. But from my point of view in the  
spaceship, it would appear that it was the clocks on Earth which were going slow  
because, as you said yourself, all velocities are relative and you can't tell who is  
actually moving.'

Bravo! You really are beginning to think like a relativist!

'What do you mean, Bravo!? Haven't I just disproved your theory?'

Well no, you haven't. What is wrong with both clocks appearing to go slow?

'Surely that's obvious. All you have got to do is put the clocks side by side and  
see which one is going slow!'
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But how are you going to do that?

'Well, as I go past you we will synchronise our clocks, and then a short while  
later we will see which clock has gone slow.'

But by that time you will be hundreds of miles away.

'Well, I'll send you a radio message with a time signal'

But we will disagree about how long it takes the radio signal to get back to me.

'Well - I will have to stop the spaceship and turn it round and..'

Aha! You are going to STOP the spaceship! As soon as you do that, the motion 
of the ship stops being uniform and we must examine very carefully what happens 
when the motion of the clock changes. The slowing down of the ship introduces an 
asymmetry into the situation which means that when you bring the clocks back 
together, the clock that was in the spaceship will indeed be found to be slow 
compared to the clock which remained back on Earth.

'Are you sure?'

Sure I'm sure. Believe it or not, this experiment has actually been done using 
extremely accurate atomic clocks and the results confirm Einstein's theories 
exactly. Mind you, the effect is incredibly small. Suppose you synchronise two 
clocks on the ground and then fly one of them round in a jet plane at a speed of 
200 ms-1 for say 10 hours. What will the expected time difference due to special 
relativity be? (I must say special relativity, because in the real experiment the 
effects of general relativity have to be taken into account as well.)

The first thing we have got to do is to work out γ for a speed of 200 ms-1. If you 
try doing this on a calculator you will run into a problem. The velocity of light is 
very large. It is in fact 300,000 km every second or 3 x 108 ms-1. This means that 

v2/c2 = 0.000000000000444 and if you try subtracting this from 1 an 
ordinary calculator will just give you an answer of 1 because the number is far too 
small and the calculator does not have enough digits.

If you know something about indices you will know that the formula

 = 1
1−v2/c2

can also be written as

 = 1−v 2/c2−1/2

Now there is an exceedingly useful little theorem called the Binomial Theorem 
which says that when x is much less than one

1xn=1nx 

If we apply this theorem to our formula, we arrive at a much simpler 
expression for γ (but remember this is only true when v is a lot smaller than c)

=1½ v2/c2
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If you try calculating γ using this formula with a calculator you will still run 
into difficulty when you add the 1 but you should still be able to confirm that for v 
= 200 ms-1

γ = 1.00000000000022

What this means is that for every second as measured by the moving clock 
takes 1.00000000000022 s as measured by the stationary clock. In 10 hours, the 
difference amounts to

10 x 60 x 60 x 0.00000000000022s

which equals

0.000000008 s  or  8 ns

easily within the capabilities of an atomic clock.

Note that, because the moving clock runs slower than the stationary clock, 
when the two clocks are compared after the trip, the moving clock will read less 
than the stationary clock by a factor of γ.

'Does this mean that if I travel to a distant star and back, everybody will be  
older than me when I return?'

You bet it does. Suppose in some future century you choose to visit Alpha 
Centauri, 4 light years away, travelling in a Thomson Astro-cruiser at 80% of the 
speed of light. To your twin brother left behind on Earth the journey will take (4 / 
0.8 =) 5 years out and 5 years back - ie 10 years in all. From his point of view 
though (and his point of view is more special than yours because it is he who 
remains 'stationary' all the time) your clocks run 1.67 times more slowly, so you 
age by only 10/1.67 = 6 years.

'So how long does the journey actually take? 6 years or 10?'

Both. It takes 6 of your years and 10 of his! You can't really say which time it 
actually takes. Both points of view are equally valid. On the other hand, every pair 
of events has what is known as a proper time interval between them, this being the 
time as measured by a clock which travels between the two events at a constant 
speed (or as in the case of two events which occur at the same place, is stationary).

The journey under consideration involves three events:

Event A : departure from Earth

Event B : turn-around at Alpha Centauri

Event C : return to Earth

The proper time interval between A and B is the time as measured by your 
clock ie 3 years. Likewise the proper time interval between B and C is also 3 
years. But the proper time interval between A and C is not 6 years, it is 10 years - 
the time as measured by your stay-at-home twin. You can see that proper times do 
not necessarily add up. You could if you like define journey time to be the amount 
of time the voyager experiences, which is the sum of all the proper times for each 
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section of the journey. In this case the journey time is 6 years and the proper time 
is 10 years, but by moving around fast enough you can make the journey time as 
small as you like. If you went to Alpha Centauri and back at 99% of the speed of 
light you could do the trip in just over a year (while your twin brother aged about 8 
years); at 99.9% of the speed of light the trip would take less than 5 months. Here 
are some more examples:

speed
(% of c)

proper time
(years)

=distance / speed

journey time
(years / days)

=proper time / γ

50% 16.0 years 14 years

80% 10.0 years 6 years

90% 8.9 years 4 years

99% 8.1 years 1 year

99.9% 8.0 years 131 days

99.99% 8.0 41 days

99.999% 8.0 13 days

'Wow! Could you really get to Alpha Centauri and back in a fortnight's  
holiday? That's really cool!'

Well, you could spend two weeks of your time getting there and back, but your 
boss back on Earth would be hopping mad, since he will have had to wait eight 
years for you to return.

Also, the formula we have been using assumes you can accelerate a rocket all 
the way to 99.999% of the speed of light in no time at all. If you did that, 
everybody inside would be reduced to jelly! But it might be possible to accelerate 
a rocket at a more moderate acceleration for a long period of time and gradually 
build up a large enough speed. Let's look at this possibility.

The 1g rocket problem
Suppose we construct a rocket which can accelerate with a continuous 

acceleration of 1 g (10 ms-2). We set out from Earth, accelerating at 1 g until we 
are half way to the star we want to visit; turn round and decelerate at the same rate; 
have a look at the star for a while; accelerate back again for half the journey; turn 
round and decelerate all the way home. (Life on board a rocket like this would be 
just like life on Earth, because the acceleration would give the effect of artificial 
gravity.)
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The formula for the time dilation effect in such an accelerated system is this:

aT
c

=sinh aT '
c  1

where T' is the proper time of the journey (ie the time as experienced by the 
space traveller) and T is the (longer) time experienced by those who stay at home; 
a is the acceleration of the ship and c is of course the velocity of light. 

If we work in units of years and light years, the velocity of light c is, of course, 
1 light-year per year.

By an extraordinary coincidence, the acceleration due to gravity at the Earth's 
surface g (10 ms-2) works out to be almost exactly 1 light-year per year2. Check out 
the working in the box below. 2

1 year is 365 x 24 x 60 x 60 = 3.15 x 107 s

Light travels at 3.00 x 108 ms-1 therefore 1 light-year (ly) = 9.46 x 1015 m

The speed of light is, of course, 1 light-year per year (ly y-1)

The acceleration due to gravity at the Earth’s surface is 9.8 ms-2.

This is equal to 9.8 x (3.15 x 107)2 / 9.46 x 1015 = 1.03 light years per 
square year (ly y-2)

So putting a = g = 1 ly y-2 and c = 1 ly y-1 our formula reduces to just

T=sinh T ' 

where T (and T’) is in years.

(For the proof of this and other interesting formulae connected with 1 g 
accelerated rockets see the Appendix A at the end of the book.)

When working out the time dilation effect we must remember that we must do 
the calculation for each quarter of the journey separately.

Here is a table which tells you how many years will pass on Earth during 
voyages of different lengths. Owing to the exponential nature of the sinh function, 

1 the sinh function - pronounced "shine" - is the hyperbolic sin and is a standard function that behaves 
in many ways rather like the more familiar sin function. It can be found on many scientific calculators 
if you press hyp before pressing sin.
2 The fact that this is anywhere close to unity is complete coincidence, depending as it does on the 
completely arbitrary relationship between the strength of the Earth’s gravitational field and the length 
of time it takes for the Earth to go round the Sun. To put it another way, it means is that if a stone could 
go on falling for ever on Earth, it would reach the speed of light in the same time that it takes the Earth 
to go round the Sun once – ignoring Relativity, of course!
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the figures rocket up dramatically and you can see that in principle it would be 
possible for a human being living now to return to Earth within 60 years to see 
what it will be like in 6½ million years time!

total time on 
ship

(years)

¼ time on 
ship

(years)

¼ time at 
home

(years)

total time at 
home

(years)

6 1.5 2.4 9.4

10 2.5 6 24

20 4 74 297

40 10 11,000 44.000

60 15 1,600,000 6500000

‘That’s incredible! Could you really travel into the future just by building a  
fast enough rocket?’

Unfortunately, two practical difficulties stand in the way of this dream. Firstly, 
it will be necessary to build a rocket motor that can sustain an acceleration of 1g 
for many decades. Sadly, no known or even theoretically possible propulsion 
system comes anywhere near this requirement. Secondly, a spacecraft travelling at 
nearly the velocity of light would probably be destroyed by all the microscopic 
interstellar dust particles slamming into it at nearly the speed of light. As we shall 
see later, the kinetic energy of a particle the size of a grain of sand travelling at a 
speed at which γ = 1,000,000 is equal to that of a 6 megaton bomb!

‘I see what you mean. In any case – I still don’t really believe it’

Well, you are not alone alone. For many years in the 1950's, respected 
scientists were still discussing the famous Twins Paradox and even now the 
internet is littered with postings purporting to show that the effect is neither 
possible nor logical. Believe me, though. It is.3

3 For a more detailed discussion of the Twins Paradox see my article in Physics Education, 32, No 5 
(September 1997), pp 308-313.
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At the top of the second hill
The roller coaster has now nearly reached the summit of the second hill and as 

it slows down momentarily you get a chance to have a quick look round. Over on 
the right the hands of the big clock appear to be moving normally again but 
somehow, in the minute it has taken you to negotiate the first big dip, the clock, 
which appeared to you to run slow when we started the descent, has inexplicably 
skipped a couple of minutes ahead.

'That's funny. I thought that clock was going slow. How come my watch seems  
to have lost a few seconds?'

Yes, that is curious isn't it? It is another example of the twin's paradox. While 
we were careering down the slope, it seemed to us that everyone else's clocks were 
going slow. But of course, to everyone else, it was our clocks which were going 
slow. The difference only became apparent when we slowed down to a crawl 
again.

'Tell me again – why is it that it is our clocks which ended up being slower  
than theirs and not the other way around?'

Because it was we whose speed changed. An object which remains at rest or 
travels at uniform speed is in what is called an inertial frame. But our frame of 
reference was not inertial because we accelerated down the hill and slowed down 
as we went up again. The people who stay in an inertial frame always turn out to 
be older then the people who accelerate and decelerate.

'Yes - I think I get it.'

Have a look at this.

Looking down you can see one of the children playing shove-halfpenny give 
his coin a tremendous whack. All the other children's coins were too big to go 
down the crack but there is something different about this one. It doesn't seem 
round, it seems oval and, incredibly, it drops right through the crack!

'How did that happen?' I hear you cry. The answer is that:

Bizarre consequence number 2
Moving objects shrink along their direction of motion.

Hold on to that Principle! I shout. You are going to need it again! The roller 
coaster tips violently forward and we are plunging downwards again...
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Chapter 2 - Length contraction
Cast your mind back to the river race. Albert takes longer than usual to cross 

the river because he has to use part of his velocity aiming upstream. Beatrice, 
however, takes a lot longer because it is really hard work rowing directly 
upstream.

Now consider the Michelson-Morley experiment. In fact, suppose you are 
watching someone else performing the experiment in a fast spaceship travelling at 
nearly the speed of light. The photon which travels at right angles to the direction 
of motion is a photon clock and, like Albert, it is slowed down by a factor of 

= 1
1−v 2/c2

The photon which moves parallel to the motion of the ship is like Beatrice and 
ought to be slowed down even more. But as we know, the Michelson-Morley 
experiment gives a null result - ie the two photons take exactly the same time for 
the journey. (Incidentally there can be no disagreement between you and the 
people on the space ship as to whether the photons arrive at the same time or not. 
It would be easy to rig up a device to blow up the ship if any difference was 
detected and it is not possible for you to disagree with your colleagues on the ship 
as to whether they are blown up or not. At least, not according to the Theory of 
Relativity. Now Quantum Theory... well that's another story!)

So how do we reconcile these two viewpoints? The answer is that the photon 
which moves parallel to the direction of motion of the ship does not have to go as 
far because lengths in that direction are contracted. Here is the formula (for the 
proof see Appendix  B):

l =
l0

 = 1−v2/c 2. l 0

We see that, while lengths perpendicular to the direction of motion remain 
unchanged, lengths parallel to the direction of motion must decrease by a factor of 
γ to preserve the constancy of the velocity of light.

Note that the length contraction factor is just the same as the time dilation 
factor but you have to divide rather than multiply. For example, if you travel at 
80% of the velocity of light past someone at rest, your spaceship will appear to 
him as if it is only 60% of its proper length. Of course, he will claim that it is your 
spaceship that is squashed but that's relativity for you!

'Is that why the penny went down the crack?' you ask.
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Absolutely. The penny was going so fast that it became shorter than the crack 
and so fell down – see the diagram below:

       
'Hey - wait a minute! Suppose I was a flea sitting on the penny! Wouldn't it be  

the crack that was shrunk and not me? I am prepared to accept that times and  
lengths might appear to extend and shrink but surely, either the penny goes down  
the crack or it doesn't! Ha! Ha! Got you now! I knew there was something wrong 
with this Relativity business!'

When you have quite finished crowing I will explain.

You mean to say you have an answer to that one as well?'

Uh-uh.

'Well, what is it then?'

I am afraid you will find this even harder to believe than anything I have told 
you so far.

'Go on - try me'

Well. it is like this. From your point of view, as the penny begins to extend 
over the (contracted) crack, the front of the penny begins to move downwards 
before the back end leaves the table. Like this:

      
'But the penny can't bend!'

Well, it doesn't bend in a physical sense, no more than it contracts in a physical 
sense. But to the flea sitting on the penny, that's what appears to happen. 
Correction. To the flea sitting on the penny, that's what really happens. I am afraid 
we have to accept:
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Bizarre Consequence Number 3
Moving objects whose speed changes can appear to bend

'Well, I guess you were right after all.'

So you do believe it then?

'No. I don't believe it. But you were right when you said I wouldn't believe it!'

But you accept it?

'Yes. I suppose so. But I am getting so confused. Is there anything that two 
observers can actually agree on?'

Yes there is. In fact this is a rather important theorem which I shall call

Reassuringly Normal Consequence Number 4
Although two observers in relative motion can each argue that they are  
stationary and that it is the other who is moving, they will both agree on 
their relative velocity
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The long straight
After two hair-raising descents, the roller coaster levels out and enters a long 

straight section of track.

Beside the track is a spare train, identical to ours except that, of course, it looks 
shorter. As I get out my stop watch to time its passing, I notice my brother sitting 
in the other train with watch in hand timing us going past.

'I suppose he thinks the our train is shorter than his.'

Correct. Well done.

'So, when he calculates how fast we are going, he will get the wrong answer,  
won't he? because he is using the wrong length.'

Er – no; he will just use the right wrong length.

'The right wrong length! Don't be ridiculous! How can the length be both right 
and wrong at the same time!'

Yes; I am sorry; I shouldn't have said that. What I meant was that he will be 
correct to use the relativistically contracted length to calculate the speed.

'Why? Surely to calculate the correct speed, you should use the correct length?'

Absolutely. But don't forget that, to my brother, the length of our train really is 
shorter. So that is the correct length to use.

'But if we do the calculation, won't we get a different answer? because we are  
obviously going to use the real length of the train.'

OK – let's work out the details:
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Chapter 3 - Relative velocity
Suppose my brother and I have two identical twin sister ships, each 100 m long 

when at rest. If we pass each other with a relative velocity of 80% of the velocity 
of light, to me my brother's ship appears to be only 60 m long. (g = 1.67 so l '= 
100/1.67 = 60 m.)

 

If I time his passing with an accurate clock I will find that he takes 0.25 µs to 
go by. Using the formula speed = distance / time I calculate his speed to be 60/
(0.25 x 10-6) = 240,000,000 ms-1.

Of course, if my brother makes the same measurements on my ship he will 
come to exactly the same conclusion about my speed.

But what does he think of my measurements and I of his? Lets concentrate on 
the latter. I watch as he approaches my ship and observe him start his clock at the 
instant he passes the front of my ship and stop his clock at the instant he passes the 
back. His clock stops at 0.25 µs. So far so good.
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I observe him doing his calculations. He starts to press the 6 and the 0 buttons. 
'No, that's wrong!' I exclaim. 'My ship is not 60 m long it is 100 m long!' Then I 
watch him divide by the time 0.25. 'No, that's wrong too,' I exclaim. 'Your clocks 
are running slow! You should be dividing by 0.417 not 0.25!' (0.417 is of course 
0.25 x 1.67) Grabbing a calculator I perform the calculation for him - only to get... 
100/(0.417 x 10-6) = 240,000,000 ms-1!

So it doesn't matter who does the calculations, we still get the same result. 
Each of us is convinced that the other has used the wrong data but we both agree 
about the answer!
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The Big Loop
'Well, I am glad about that!'

As I glance ahead I see that the roller coaster is hurtling towards one of those 
up-and-over loops.

'But there is still something puzzling me about the penny.' you say. 'How can 
both ends of the penny start to fall at the same time in one frame of reference  
while the flea sees the front start to fall before the back? I don't get it.'

Over on the left, you hear the sound of a train. This one is really shifting and 
you watch it plunge into the tunnel. The train you saw before had just the same 
number of carriages and was the same length as the tunnel but you are not 
surprised now to see that this one seems a lot shorter and there is no sign of the 
engine emerging when the last carriage plunges out of sight.

Suddenly you hear a couple of loud explosions. Two large clouds of dust rise 
from the two ends of the tunnel on the railway line. Someone – a terrorist perhaps 
– has blown up the tunnel!! A moment later, the engine of the train bursts through 
the heap of rubble at the exit of the tunnel and you watch horrified as the coach 
after coach piles into the wreckage.

'Look at that! The whole train has been completely wrecked!'

Yes: it was going so fast, it was shorter than the tunnel.

'Yes, but – surely that's just a kind of illusion isn't it? The train is really exactly  
the same length as the tunnel so, it stands to reason that, at the instant the last  
carriage entered the tunnel, the engine must emerge from it. Rulers might shrink  
and clocks run slow – but surely, if two things happen at the same time – they,  
well, happen simultaneously, don't they?'

Not necessarily. Basically, the whole notion of simultaneity has to be 
abandoned and we must accept the brutal fact that:

Bizarre Consequence Number 5
Events which occur at different places but at the same time to one  
observer may happen at different times according to another.

 But just at that moment your world begins to turn upside-down…
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Chapter 4 - Simultaneity
There is a curious paradox connected with length contraction which I shall call 

the train in the tunnel paradox. A train whose length when at rest is agreed by all 
observers to be 100 m enters a tunnel whose length is also exactly 100 m. The 
train stops in the tunnel and everybody agrees that when the engine is flush with 
the exit, the guard's van is flush with the entrance.

Some time later, the train passes through the same tunnel at high speed - 80% 
of the velocity of light in fact. At this speed the g factor is 1.67 and to the man 
standing by the track at the entrance to the tunnel the train appears to be only 60 m 
long and spends an appreciable amount of time completely inside the tunnel.

The engine driver, however, sees things rather differently. To him it is the 
tunnel which is whizzing past at 80% of the velocity of light and which is in 
consequence shrunk to 60 m in length.

Surely they can't both be right? To put it even more forcibly, suppose the man 
beside the track is in fact a terrorist and his mission is to trap the train in the tunnel 
by blowing up the exit at the instant the back of the train enters the entrance? Will 
he succeed or won't he? To the engine driver, at the instant the back of the train 
enters the tunnel, the engine is already outside it!

In order to sort out the train in the tunnel paradox, we have to ask ourselves 
how the terrorist is going to arrange his devious trap. He could arrange for an 
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optical signal, triggered by the passage of the last carriage into the tunnel, to blow 
up the other end of the tunnel - but light does not travel instantaneously and, by the 
time the signal has triggered the explosion, at least part of the train might already 
have emerged from the tunnel.

What he must do is send the signal in advance. We must suppose that he 
knows how fast the train is going and how short it is going to be, so it is easy for 
him to calculate the time delay needed between the instant the front of the train 
enters the tunnel and the time the signal needs to be sent.

Sure enough, when the time comes, the signal is sent and at the instant the back 
of the train enters the tunnel, the explosion goes off and the whole train is 
wrecked.

What does the train driver think of all this? He reasons (quite correctly) that at 
the instant that (to him) the back of the train enters the tunnel he will be well out of 
the tunnel and in no danger of being trapped inside by the simultaneous explosions 
but, as he approaches the tunnel, he is horrified to see the terrorist (whose clock 
appear to be going so s-l-o-w-l-y) set off the light signal far too early. What is 
more, the tunnel is so short the light signal takes no time at all to get to the far end 
and the explosion goes off just before the engine reaches the end of the tunnel. 
Meanwhile, the back of the train (which to the engine driver appears not to have 
yet entered the tunnel) continues to move as if unaware of the carnage ahead and, 
at the instant the last carriage enters the tunnel, the second explosion goes off and 
the terrorists triumph is complete!

The truth is that events which are simultaneous to the terrorist are not 
simultaneous to the engine driver.

We had better take a careful look at what we mean by events being 
simultaneous to one observer first of all. When the terrorist says that to him the 
two explosions were simultaneous, he doesn't mean that he saw them happen at the 
same time. Since he is standing at the tunnel entrance, he sees the explosion 
happening at the other end (event X) after it actually happens. In fact he actually 
sees three distinct events from where he is standing:

Event A: light signal sent to the front of the tunnel

Event B: explosion set off at the back of the tunnel

Event C: light returns from the explosion at the front of the tunnel.

Here is a diagram showing the terrorists point of view:
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Now, according to the terrorist, event B happens exactly half way between 
events A and C. It is this equality which justifies his assertion that event X (the 
explosion at the front of the tunnel) happens at the same time as event B, the 
explosion at the back.

Why doesn't the driver agree with this analysis? Well, according to him, he is 
stationary and it is the tunnel which is moving. He sees the light pulse travelling at 
the speed of light towards the front of the tunnel but he also sees the front of the 
tunnel rushing towards the light pulse. To him, therefore, the time taken for the 
light pulse to get to the front of the tunnel is quite short. (This is like Beatrice on 
her home run.) The light takes an age to return, however, as the tunnel is now 
travelling in the same direction as the light beam. Of course, the driver will agree 
that the second explosion (the one at the back) goes off exactly half way between 
the sending of the signal and the arrival of the light from the first explosion but he 
will not agree that it is simultaneous with the first explosion. On the contrary, he 
will maintain that it happens much later.

To the engine driver, it seems as if space and time are no longer at right angles 
and the 'lines of simultaneity' are tilted forward at an angle. The signal seems to 
reach the front of the train quite quickly and therefore to him, the explosion at the 
front seems to occur before the explosion at the back.
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To put it another way, since the engine driver is convinced that the explosion at 
the front occurs before the explosion at the back, the explosion at the front is 
already history when the explosion at the back happens. So events which happen at 
places in front of you (ie in the direction towards which you are moving) are 
shifted further into the past while events behind you are shifted towards the future.

Lets pursue this idea a bit further. Two observers who are stationary with 
respect to one another can agree about simultaneous events even if they are a long 
way apart. It makes perfect sense therefore to think about what is happening now 
on some distant star providing you are not moving with respect to that star.

Imagine that you have an alien friend who lives on the planet Mishtar in the 
Rigel star system. Rigel (the brightest star in the constellation Orion) is 1000 light- 
years away from Earth and, we shall suppose, the planet Mishtar is very like Earth 
and has a year exactly equal to one Earth year. One day you receive a message 
saying that your alien friend is this minute celebrating his 5,000 birthday (you 
must suppose that Mishtarians have discovered the secret of eternal life too!), It 
makes perfect sense to reason that since the signal has taken 1000 years to reach 
you, your friend is actually 6,000 years old now.

But, as you raise your glass in salutation, you suddenly realise that in the 
month of September, Earth is rushing towards Orion at a speed of 30 km/s (that is 
0.0001 light years per year and so you must apply a relativistic correction to this 
calculation. When you move towards a distant star, your perception of what is 
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happening now on that star changes. As we have seen, it is shifted by a certain 
amount into the past. The formula for the change in time on that distant star as you 
move towards it at a velocity v is this:

T = l v
c2

where l is the distance between you and the star as measured when you are at 
rest with respect to the star. (for a proof of this formula see Appendix C)

Now, working in years and light years, v = 0.0001 light-years per year, and of 
course c = 1 light-year per year, so ΔT = 1000 x 0.0001 = 0.1 years = 36.5 days. 
So just by moving towards him you can make your Mistarian friend older by 36.5 
days! You are too late! You should have celebrated his birthday a month ago!

The time change may not sound much but the effect increases with distance, so 
time on a galaxy 1,000,000 light years away varies by as much as 100 years as the 
Earth swings around its orbit about the Sun. And even walking towards a galaxy 1 
billion light years away changes time there by 5 years!

Of course, like time dilation and length contraction, the effect is not real. You 
can't actually make someone older by moving towards them. What we are saying 
is that when you change you speed, you also completely change your perspective 
of what is simultaneous.

You can explain the Twin's Paradox like this. From the point of view of your 
twin brother on stationary Earth, you ( travelling on your state-of-the-art Astro-
cruiser to Alpha Centauri at 80% of the velocity of light) simply age more slowly 
than he does and return 10 years later only 6 years older. From your point of view, 
it is he who ages more slowly and in the first 3 outward years of your journey, he 
will only age by 1.8 years. But when you turn round, your perception of what is 
now suddenly changes by DT = lv/c2 = 4 x (2 x 0.8) = 6.4 years. (The factor of 2 is 
because your speed changes from -0.8c to +0.8c.) When you get back, you find 
that your brother is 1.8 + 6.4 + 1.8 = 10 years older!

The question of what is now on a distant star is, of course, quite academic 
because the whole point is that you are not there to check it! but it might occur to 
you that if you can change the time at which events on a distant planet seem to 
occur just by moving around, you might be able to change the order in which 
events at different places occur. Well, as a matter of fact you can. If your friend on 
the distant star (A) happens to have a (slightly older) twin brother who lives on 
another star (B) 1000 light years away in the opposite direction. By moving away 
from star B and towards star A you can make the younger brother older than the 
elder brother! Or to put it another way, you can arrange it so that (to you) the 
younger brother's birthday happens before the elder brother's birthday!
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'Wait a minute' you say. 'If you can change the order in which events occur, is  
it possible to make the effect precede its cause? We have met several bizarre  
consequences so far, could this be another one? If so, you could travel backward  
in time . . . You could go and kill your own grandmother . . .'

No you couldn't! Relativity may be bizarre but it is not illogical! You can 
indeed alter the order of events, but only if they happen in different places. What is 
more, the events have to be fairly close together in time as well. To be more 
specific, you can only reverse the order of two events if a light beam triggered by 
event A cannot reach B before event B happens. We can summarise this as 
follows:

Reassuringly Normal Consequence Number 6
Although the motion of an observer can alter the order in which some  
events appear to happen, relativity is entirely consistent with the laws  
of cause and effect.

Mind you, this does imply one terribly important consequence which we must 
add to our list:

Interesting Consequence Number 7
It is absolutely impossible to send a signal of any sort at a speed faster  
than that of light in a perfect vacuum.

'Why? What would happen if you could?'

Well, let us suppose that at some time in the future, your friend on Mishtar tells 
you the secret of instantaneous telepathy. One day you get a telepathic message 
from Mishtar with wonderful news. Your friend has reached the grand age of 
10,000 years and he is giving a big party for all his friends right now. Of course, 
you respond by instantly conveying your congratulations. Nothing wrong in that – 
provided that you and your friend are stationary with respect to each other.

But suppose that, having received the message, you get into a spaceship and 
accelerate in the direction away from Orion. If moving towards a distant star 
makes your friend older, moving away from it will make him younger (always 
from your point of view, of course). If you were to accelerate to a speed of 
30 km s-1, you would make him 36.5 days younger and if you sent your 
congratulations to him now, he would receive the reply before he had sent his 
initial message! If this sort of thing was possible, then, with the aid of an 
accomplice on a distant planet, you could effectively predict the future by telling 
your distant friend what has just happened and getting him to return the 

27



information several days earlier! This is nonsense!

The fact is - no signal of any sort can travel faster than the speed of light.

If we have to abandon the notion of simultaneity, we also have to rethink the 
concepts of past, present and future. Our usual picture of the nature of time can be 
represented something like this:

The future

The past

Here      now

Space
Tom Sarah Rob Chris

Time

Sarah and Rob's present

The 'present' is a line which moves inexorably up the diagram gradually 
turning 'future' events (coloured dark grey) in to 'past' events (coloured light grey). 
Four characters in this simple universe are represented by 'world lines' which 
snake their way up the diagram. For Sarah and Rob, the point labelled 'Here/Now' 
appears to have special significance.

Relativity forces us to take a rather different view. Since different observers 
have a different perception of now, we must divide spacetime into four regions – 
the real past (light grey), the real future (grey) and what I shall call the inaccessible 
past (hatched light grey) and the inaccessible future (hatched grey). Real past and 
future are therefore contained within an hourglass shape whose limits represent the 
speed of light (On the diagram below the speed of light is represented by a 450 

line.)

The future

The past

Here      now

Space
Tom Sarah Rob Chris

Time

Sarah and Rob's present
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For any individual at a point in spacetime (called the here/now) the real past 
contains all events which could in principle have a causal effect on the here/now 
by a signal which travels no faster than light. The inaccessible past contains all 
those events which happened so recently and/or are so far away that no signal 
could possibly reach the here/now from them. Likewise the real future is the 
collection of all events which could, in principle be causally affected by a signal 
sent from the here/now while the inaccessible future is the collection of events 
which have not happened yet but which we cannot in any way influence because 
light does not have time to reach them.

If we consider Sarah and Rob to be at rest when they meet, their now is a 
horizontal line. But if they move say to the right, relativity causes their 'now' to 
incline upwards like this:

In fact it works rather like a pair of scissors. If the world line makes an angle of 
200 with the vertical time axis, the now line makes an angle of 200 to the horizontal 
space axis. Note that, by moving with the right speed, any point in the inaccessible 
past or inaccessible future can be made simultaneous with the 'here/now'. In a 
sense, then, both the inaccessible past and the inaccessible future must be 
considered to be part of the potential present. 

At the instant depicted in the diagram Sarah and Rob happen to be on a 
spaceship moving to the right and both Tom and Chris are stationary (ie their 
world lines are vertical) where their world lines intersect Sarah and Rob's 'now'. 
Since they are stationary, Chris' present and Tom's present are horizontal lines. 
Chris' present crosses Sarah and Rob's real future while Tom's present crosses their 
real past. These lines are shown in the next diagram.
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If Sarah could have an instantaneous telepathic conversation with Chris it 
might go something like this:

"Hi Chris! I have just met this great guy called Rob and we are going to 
celebrate New Year on Mishtar.”

"Well that's great news, Sarah, and I sure hope you get along - but surely New 
Year on Mishtar was last week?"

Likewise, if Rob sends a telepathic message to Tom, he will be seriously 
puzzled because, according to him, Rob and Sarah have not yet met!

Of course, the vital thing to appreciate is that faster than light messages are 
forbidden. If all messages travel at the speed of light or less, there is no illogicality 
because all events are eventually seen to happen in the same order from all 
observers points of view. We do, however, have to accept that there is no such 
thing as 'the present'. Each observer has a now, but different observers simply have 
different nows.

'I see. It is as if past and future have some fuzzyness where they meet'

That's right. But they always come together in sharp distinction at the 
here/now. Some authors, have taken the blurring of past present and future to 
imply that the passage of time is an illusion. In fact this is an age old idea and I do 
not believe that Special Relativity lends any weight to it at all. Each of us has a 
real past and each of us has a real future. The fact that we cannot always agree on 
what exactly constitutes the present is just another of those bizarre consequences 
which we just have to accept.

Bizarre Consequence Number 8
Although everyone can agree on what constitutes a person's past and  
future, nobody can agree on what constitutes that person's present.
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The Switchback
It is quite a relief after toying with the idea that effects might precede their 

cause to see the world right itself and for things to look normal again as the roller 
coaster enters a high speed switchback. From here, you have a clear view of the 
rifle range. Next to it is one of those whirling roundabouts which have little model 
aeroplanes which fly round and round a tall pole.

'That looks like fun' you say. 'Do you see the boys in those aeroplanes?'

As we watch the boys we see that they have guns mounted in the noses of the 
planes and as they whirl round, they are firing at the targets on the rifle range.

'Seeing those boys has given me an idea. Suppose I have a gun which can fire  
bullets at 80% of the speed of light and suppose I fire them from the front of my  
spaceship which is travelling at 80% of the speed of light. Surely the bullets will  
be travelling faster than light then?'

Good idea, but speeds don't add up like that in relativity. In fact there is an 
important theorem about the addition of velocities which I shall call:

Bizarre Consequence Number 9
Speeds do not add up in the usual way and the result of adding two 
speeds together is always less than the speed of light however great the  
original speeds are.
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Chapter 5 - Adding speeds together
If I see your spaceship travelling past at a speed u and you see your bullets 

travel away from your ship at a speed v it turns out that I will see your bullets 
travelling at a speed:

w = uv
1uv /c2

(For a proof of this formula see Appendix D)

If either u or v is much smaller than the speed of light the term 1 + uv/c2 on the 
bottom is essentially equal to 1 and the formula reduces to w = u + v which is what 
we would expect. If, however, you put u = c then you will find that a remarkable 
thing happens. A factor of c + v cancels out and you are left with just c. (And if 
you try adding together speeds which are greater than c the sum is actually less 
that the speeds you started with! But this is, of course, impossible anyway.) The 
speed of light is a kind of ceiling beyond which you just cannot go.

Suppose you had a multistage rocket each of whose stages could reach 80% of 
the speed of light. A two stage rocket would reach 80% ++ 80% = 97.56%. A three 
stage rocket would reach 97.56% ++ 80% = 99.72% and a four stage rocket, 
99.97% of the speed of light. In fact you would need an infinite number of stages 
to reach 100%!

'But what happens to the 1g rocket? That goes on accelerating at a constant  
rate so it must be getting faster and faster. Surely then it must eventually reach  
and exceed the speed of light, mustn't it?'

You're right about it getting faster and faster with respect to the universe 
outside and it is also true to say that from the point of view of the occupants of the 
rocket, the acceleration is constant in the sense that they experience a constant 
artificial gravity of 1g. But the rocket never exceeds the speed of light. It turns out 
that the speed of the rocket increases according to the formula

v = c tanh a
c

t

(The details are given in Appendix A on the 1g rocket problem.)

This formula describes a curve which increases exponentially to a limit and for 
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a rocket accelerating at 1g, it looks like this:
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Just in case you think you are getting the hang of this relativity business, I 
should like to remind you of another consequence of Special Relativity.

Bizarre Consequence Number 10
Although it is impossible to travel faster than the speed of light, it is  
perfectly possible to travel to a distant star in less time than it takes for  
light to get there.

'Oh, Come on!' you cry, 'That doesn't make sense at all! You have just proved  
to me that you can't travel faster than light so how can you say, in the next  
sentence, that you can travel faster than light!'

But I didn't say that.

'Yes you did'

No, I said it was perfectly possible to travel to a distant star in less time than it  
takes light to get there.

'Well that's just the same thing!'

No it isn't because it depends on whose time we are talking about. I will admit 
that I did phrase my statement in such a way as to make it sound a bit paradoxical, 
but the truth of the matter is that if you travel to Alpha Centauri at 80% of the 
speed of light, you will get there in 3 years - 3 of your years, that is. Light takes 4 
years to get there. (For more details, see Appendix E)

'Well, aren't you travelling faster than light then?'
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No. If you set out at the same time as a beam of light, the light will still get 
there first because it is travelling faster than you. That it only takes 3 of your years 
to get there can be explained in either of two ways. From my point of view (left 
behind on Earth) your clocks are ticking slowly because of time dilation. From 
your point of view the distance from Earth to Alpha Centauri is shrunk because of 
length contraction. Which explanation you chose depends on your point of view.

'So how long does it take light to get there from the light beams point of view?'

Now there you do have an interesting question. In fact it was this very question 
that started Einstein thinking about the whole business when he was still a student. 
At the speed of light time stops still and the whole universe shrinks to a point. I 
suppose it is meaningless to contemplate what the world looks like from a photon's 
point of view. Indeed, I rather doubt if a photon has a point of view; but if we must 
pursue the idea at all we have to conclude that, to a photon, the whole universe is 
nothing but a single point which exists for zero time.

If God exists, He is a photon.
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The spiral
The roller coaster now enters a series of tight curves which cause it to go round 

in a horizontal circle faster and faster and faster. Some distance away a siren goes 
off and you are not surprised to hear the pitch of the siren wail up and down as 
first you approach and then recede from it.

'Well, at least the Doppler effect works as normal' you say.

Yes, but we are not travelling very quickly at the moment. See what happens to 
the colour of that green light on the railway track over there as we increase our 
speed.

After a while you remark 'I can't see anything wrong with that either. When we 
approach the light it goes blue and when we recede it goes red.'

True enough. But there is something strange about the amount by which the 
colour of the light is shifted. In sound there are two quite distinct Doppler effects: 
the 'moving source' effect and the 'moving observer' effect. But in light there is 
only one Doppler effect and it isn't quite the same as either of them!

Interesting Consequence Number 11
There is only one Doppler effect in light.

It is easy to see why. In sound, there are three bodies to consider – the source, 
the observer and, thirdly, the air through which the sound moves. Both the source 
and the observer can move through the air at different speeds so there are two 
Doppler effects, one for each.

But in light, there is only relative motion between the source of the light and 
the observer. Therefore there can only be one Doppler effect in light.
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Chapter 6 - The Doppler shift
When you hear an ambulance go by, the pitch of its siren falls. Since the 

ambulance is moving through the air and it is you who is stationary, this is due to 
the moving source effect. It works like this.

Suppose that the ambulance s moving away from you and its siren has a period 
T0. During the time it takes for the siren to emit one complete wave, the wave front 
has moved towards you a distance cT0 but the ambulance has moved in the 
opposite direction a distance vT0. The wave is therefore stretched  to a total 
distance (cT0 + vT0) 

Since this wave reaches me travelling at a speed of c, the time T it takes for the 
wave to pass me is (cT0 + vT0)/c  ie:

T = T 01v /c

The apparent time period has been increased by a factor of (1 + v/c).

(If you are a musician, you will know that a change of one semitone – which is 
1/12th of an octave – is caused by a change in pitch of 12Ö2 or 1.06 This means that 
an ambulance travelling at 45 mph (which is 6% of the speed of sound) will have 
its siren Doppler shifted by a whole tone as it goes by – a semitone up as it 
approaches and a semitone down as it recedes.) 

Now exactly the same thing happens with light. Hadn't you noticed that in 
addition to the siren sounding lower, all the lights on the ambulance look redder 
too? No? Well I am not too surprised as the ambulance may be travelling at an 
appreciable fraction of the speed of sound, but it is not travelling anything like as 
fast as the speed of light so the effect is not going to be very noticeable.

The argument in light is exactly the same except that, in addition to the 
increase due to the wavelength stretching effect, we must also include the increase 
due to time dilation. All we have to do is replace T0 by gT0 ie:

T = T 01v /c =
t 01v /c
1−v 2/c2

Multiplying top and bottom by c and cancelling a factor of cv  leads 
finally to

T = T 0 cv
c−v

'But I thought you said that there was only one Doppler effect in light. You  
seem to have found a formula for the  moving source effect – but what about the  
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moving observer effect?'

OK. Consider the normal effect (in sound) first. Suppose you are blowing a 
whistle to attract the attention of the ambulance driver (who is still travelling away 
from you). The waves you send (which have a wavelength cT0) are chasing the 
ambulance with a closing speed of (c - v). The time it takes for one wave to catch 
up the ambulance is going to be cT0 / (c – v) so:

T =
T 0

1−v /c

Again the time has been increased so the ambulance driver will hear a lower 
pitched whistle, but you will notice that the formula is not the same as the formula 
for the moving source effect which multiplies by (1 + v/c) rather than dividing 
by (1 - v/c).

Now we must be a little careful when applying the relativistic time dilation 
correction here. From our point of view, it is the ambulance man's clock which is 
going slow. So if it takes T of our seconds to reach the ambulance, it will take 
fewer of his. This means that we must divide by g, not multiply. Hence

T =
T 0

1−v /c
=

T 01−v2/c2

1−v /c

which, surprise, surprise, leads us to exactly the same formula!

Astronomers are usually more interested in changes in wavelength than 
changes in time period, but the formula is essentially the same as wavelength is 
proportional to period. ie:

 = 0 cv
c−v

I find it rather pleasing that the formula for the Doppler shift in light turns out 
to be the geometric mean of the two normal Doppler shift formulae. Plotting some 
graphs will help to sort out the differences.
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From a physicists point of view, it is the Doppler shift factor here defined as 
l/l0 which is of primary interest. From an astronomer's point of view, it is the 
change  in wavelength l - l0 which is generally measured and they usually quote a 
star's red-shift factor defined as (l – l0) / l0. It is easy to see that Red-shift factor 
= Doppler shift factor - 1

If the speed of the source is much smaller than the speed of light, we can 
simplify the formula using the binomial theorem as follows:


0

=  cv
c−v

=  1v /c
1−v /c


0

= 1v /c1 /21−v/c−1/2 ≈ 1½v /c1½v/c = 1v /c

hence:

Red-shift≈ v /c

This expression can only be used in the range where the speed of the galaxy is 
within 20% of the speed of light. The Andromeda galaxy, for example, shows a 
red-shift of -0.001 (ie it is in fact blue-shifted) and is moving towards us at a speed 
of about 300 km/s. Don't worry about a collision though – at 2.5 million light years 
away it is going to take 2.5 billion years to reach us!

Quasars with very large red-shift factors have been observed – for example: 
quasar PC1247+3406 has a red shift of 4.897 therefore a Doppler shift factor of 
5.897 and a recession speed of 94% of the speed of light. In 1929, Edwin Hubble 
discovered that all the distant galaxies were receding from us and subsequent 
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measurements have indicated that there is a simple proportional relationship 
between speed and distance, with the edge of the observable universe at about 13.6 
billion light years. If PC1247's red shift is due to the Doppler effect and nothing 
else, it would seem to indicate that it lies a staggering 12.8 billion light years 
away.

Of course, if a galaxy were to travel away from us at a speed equal or greater 
than that of light, it would be invisible because all light from it would be red-
shifted out of existence.

'I suppose so – but surely the point is academic because you have already  
pointed out many times that nothing can travel faster than light.'

True – but as it happens, it is not inconceivable that a galaxy should recede 
from us at such a speed in spite of what we have said about the addition of 
velocities etc. Cosmologists believe that the distant galaxies show large red-shifts, 
not so much because they are moving away from us in an otherwise fixed space; 
they prefer to think of the galaxies themselves as being stationary – but the space 
in between them is expanding.

'What does that mean?'

Well, imagine a whole lot of ants crawling around on a balloon which is being 
blown up.

The distance between the ants is increasing all the time – but the ants are not 
really moving at all. Also, at any given time, the rate at which the distance 
between two particular ants increases is directly proportional to the distance 
between them. Eventually, when the balloon gets large enough, there will be a pair 
of ants whose separation is increasing faster than the speed of light.

Our universe could be like this. There could indeed be galaxies out there which 
are moving away from us faster than the speed of light!

'Well, as I said before, the idea is academic because we could never see them 
or go there – even in principle.'

Yes – you are probably right, though there is a possibility that, if the expansion 
of the universe were to slow down, some of these galaxies might come into view 
again. The latest research seems to indicate that, in fact, the expansion of the 
universe is accelerating. If this is the case, some galaxies which we can see now 
will disappear over the horizon, never to be seen again. The truth is, we don't 
really know what kind of universe we are living in – mainly because astronomers 
are seriously divided on the question of how much matter it contains. But that is 
another story.
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The third hill
The roller coaster, still travelling at high speed, emerges from the spiral and 

shoots up a gentle rise. Once again, as it approaches the summit, you have a 
chance to catch your breath and look around. 

'Hey! Look at those boys over there! That's really clever!'

You're right, it is. The boys are tossing a pair of footballs to each other – but 
instead of just playing catch, they are bouncing the balls off the other one so that 
they catch the one they have just thrown.

'That must be really difficult.' you say. 'You have got to toss the ball with  
exactly the right speed so that it comes back to you. If you toss it too slowly it  
won't have enough momentum to bounce the other ball back to its owner.'

But you don't have time to watch much longer. The roller coaster is starting its 
third big descent. Hang on!

To your surprise you discover a football in your lap, just like the ones the boys 
were throwing. On a whim you toss it sideways out of the coaster. Just then, ahead 
of you, you see one of the boys throwing his ball towards the tracks. To your 
astonishment you realize that the two balls are on a collision course, but your ball 
seems to be travelling faster than his.

On the other hand, to the boy beside the tracks, it is you who are moving 
swiftly by and (because your actions are slowed down by time dilation) it seems to 
be his ball which is travelling faster than yours. Each of you predicts that the balls 
will bounce asymmetrically towards the other. What in fact happens is that the 
balls bounce off each other perfectly and the boy catches his ball while your ball 
lands in your lap! This all happens because of:

Bizarre Consequence Number 12
Moving objects increase their mass.
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Chapter 7 - Mass Inflation
If two perfectly elastic bodies of equal mass m travel towards each other with 

equal and opposite speeds u, they will bounce off each other with identical but 
reversed velocity. This is a straightforward consequence of the laws of 
conservation of energy and momentum.

But what if one of the bodies is also travelling across the line of the collision at 
a speed of v? The collision will look something like this:

In Newtonian dynamics the sideways motion of one body is irrelevant and does 
not change the behaviour of the two balls in the perpendicular direction. Nor 
should it in Special Relativity either, even if v is a sizeable fraction of the speed of 
light. The problem comes when we consider how the body is given its sideways 
velocity u (assumed to be much smaller than v).

You see, from B's point of view, the mechanism which propels ball A sideways 
is running slow because of time dilation and uA appears to be less than uB by a 
factor of g. Naturally from A's point of view it is uB which appears to be less than 
uA. All other factors being equal, A and B will therefore predict different 
outcomes. In fact, since the whole situation must be symmetrical with respect to A 
and B, we know that what actually happens is that the balls bounce off each other 
with unchanged speeds.

So what is the solution? Clearly, while the speed of the two balls appear to be 
different, the momentum of the balls must be the same. Now, momentum is mass x 
speed and if the speed is apparently reduced by a factor of  g because of time 
dilation, the mass must be increased by a factor of  g to compensate. This 
phenomenon is called mass inflation and the appropriate formula is:

M = M 0 =
M 0

1−v2/c2
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where M0 is the rest mass of the object - ie its mass when measured at rest.

Likewise the momentum p of an object moving with a relativistic speed v is 
equal to:

p = mv = M 0 v

This gives us another explanation as to why the speed of the 1g rocket never 
gets greater than the speed of light. From the point of view of an observer on 
Earth, the faster the rocket goes, the more massive it gets. Since we assume that 
the thrust of the rocket is constant, the effective acceleration (as seen from a 
stationary observer outside the craft) must decrease more and more. In fact this is 
exactly what we observe when we accelerate electrons in a linear accelerator over 
millions of volts. When they get up to 99% of the speed of light, the extra volts 
don't make them go much faster but they do impart extra momentum and of course, 
energy to the electrons.

'Ok, so I accept that mass increases and that the momentum of a particle of  
rest mass M0 travelling at a speed v is gM0v. What about kinetic energy? I suppose  
that is ½gM0v2. Is that right?'

Well that is an excellent guess. At low speeds, g=1 so the formula reduces to 
½M0v2 which is correct and at high speeds g tends towards infinity so the kinetic 
energy also becomes infinite which is correct again. Nevertheless, I am afraid it 
still isn't quite right. The correct answer is:

KE r = M 0 c2−1

where Ker is the relativistic kinetic energy. (for the proof of this equation see 
Appendix F)

It is worth writing out both these equations in full and expanding them using 
the binomial theorem so that the difference is obvious:

KE1 = ½ M 0 v2 KE2 = M 0c2−1

KE1 =
½M 0 v2

1−v2/c2
KE2 = m0c2 1

1−v2/c2
− 1

KE1 = ½M 0 v21 − v2

c2
−1/2

KE2 = M 0 c21− v2

c2
−½

−1
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KE1 = ½M 0 v21 v2

2c2
3v4

8c4 
5v6

16c6... KE2 = M 0 c2 1 v2

2c2
3v4

8c 4
5v6

16c6...−1
KE1 = ½M 0v2 v4

2c2
3v6

8c4
5v8

16c6... KE2 = ½M 0v23v4

4c2 
5v6

8c4
35v8

64c6. ..
As you can see the differences are subtle but that is the way it is. Notice that 

both expressions reduce to ½M0v2 for small values of v.)

When the two functions are plotted on top of one another you can see just how 
little difference there is:

The importance of the distinction lies not in the slight differences in numerical 
values that are generated but in the whole new perspective that the equation throws 
on the nature of mass and energy.

Let's rewrite the equation in the following way:

KE r = M 0 c2−1

KE r = M 0 c2−M 0c2

KE r = M c2−M 0 c2

M c2 = M 0 c2KE r

Rewriting an equation in a different way doesn't prove anything but it can 
suggest ideas. Lets give the terms some meaningful names.
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Mc2 is a kind of energy term formed from the total relativistic mass M. It 
seems sensible therefore to call this term the total relativistic energy of the moving 
body E.

Similarly, since M0 is the rest-mass of the body, M0c2 should rightly be called 
the rest- mass energy of the body E0.

This permits us to say the following:

Total relativistic energy = rest-mass energy + relativistic kinetic energy 

or in symbols:      E = E0KE r   

where       E = M 0 c2

It was a stroke of genius on Einstein's part to see that the two terms E = Mc2 

and E0  = M0c2 were not just mathematical junk, they actually had physical 
meaning. An object at rest really does have an incredible amount of energy locked 
up inside it. Special Relativity does not prove that a mass at rest has energy since 
there is no process dealt with by the theory which could possibly release this 
energy but Einstein speculated on the possibility that one day such a process might 
be discovered, a speculation which became all too true in his own life time.

So now we have arrived at:

Profound Consequence Number 13
All massive objects contain energy according to the famous relation:

E = mc2

The significance of this equation cannot be exaggerated. It ranks alongside the 
discovery of the law of gravity, the idea that zero is a number, the invention of 
language and the discovery of fire as a turning point in human history - and as an 
icon for the intellectual achievements of the twentieth century, it can hardly be 
surpassed (Hence the flashy box!). Let us observe a few moments of thoughtful 
and respectful silence before it.
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It hardly needs saying that since the speed of light is quite large, the rest-mass 
energy of a kilogram of matter is very large indeed. In fact it is equal to 
90,000,000,000,000,000 J. The average human being converts energy at a rate of 
about 100 W so this quantity of energy would keep you alive for about 28 million 
years! More realistically, it is equal to the total energy output of a large modern 
power station in 2 years of continuous operation.

On the other hand, the Sun (which outputs a prodigious 4 x 1026 W) eats up 4 
million tonnes of matter every second!

Mind you, that is only a titbit compared to the most energetic objects in the 
known universe, the quasars, which probably emit something like 1039 W and eat 
up the mass of the Moon every second!

'Incredible! So everything that has mass has energy does it?'

Absolutely right. But that is only really half the story. Einstein's equation 
works the other way round as well and everything which has energy, also has 
mass. What I am saying is that a new battery is more massive than an old flat 
battery, a wound up watch is heavier than a run-down watch, a hot cup of tea 
weighs more than a cold cup of tea. And things which lose energy get lighter: the 
total mass of the products of an exothermic chemical reaction is less (after the heat 
has escaped) than the total mass of the reagents, two magnets stuck together weigh 
less than the two magnets separately, and most important of all, the mass of an 
atom is measurably less than the sum of the masses of all its constituent particles.

Even photons, which since they travel at the speed of light have zero rest mass, 
must have (relativistic) mass by virtue of the energy they contain. Not only that, 
they have momentum as well, but before we work that out, we have one more 
important consequence to state which is absolutely true for all objects under all 
circumstances. It relates the relativistic energy E of a body to its momentum p and 
it looks like this:

Important Consequence Number 14
The total relativistic energy E of a body and its relativistic momentum p 
are related by the equation:

E 2 − p2 = M 0
2 c4

(you will find the simple proof in Appendix G)

As we mentioned earlier, this relation has special relevance for the photon 
(whose rest-mass is zero and for which the usual equations for energy and 
momentum are undefined). Putting Mo = 0 we get
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Important Consequence Number 15
The total energy E of a photon is related  its momentum p by the  
equation:

E = p c

'What do you mean when you say that a photon has momentum? Surely  
something which doesn't have mass can't have momentum, can it?'

Well, yes, it can. If you like you can think of it as the momentum of the mass 
of the energy which the photon carries. To be sure a photon does not have a lot of 
momentum. If you shine a 1 W laser beam (or an ordinary torch) at a black 
surface, every second the surface absorbs E/c units of momentum ie 3.3 x 10-9 Ns. 
Since rate of change of momentum equals force, the laser beam exerts a force of 
3.3 nN on the surface. That is a trillionth of the weight of a can of baked beans. 
Not a lot!

On the other hand, the energy density of solar radiation here on Earth is about 
3,000 Wm-2 so the force on a solar wind satellite whose sail has dimensions 
30 m ´ 30 m would be 9 mN (9 x 10-3 N). This doesn't sound much either but the 
force of gravity from the Sun on a 1 kg mass at the same distance from the Sun is 
only 6 mN (6 x 10-3 N).

What this means is that, if  you could make a reflecting 'sail' large enough (and 
light enough) you could balance the force of gravity against the force of the solar 
wind and 'sail' around the solar system for free!

An even more important consequence of the fact that photons have momentum 
is the fact that the Sun itself is supported by the enormous pressure of all those 
photons fighting to get out. The instant the Sun runs out of nuclear fuel in its core, 
the photon pressure will disappear and the Sun's interior will collapse causing a 
massive explosion called a supernova which will engulf the Earth and obliterate all 
traces of life on it.

'That doesn't sound too good. How long have we got?'

Don't worry. It won't happen for another 4 billion years yet!
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The second roller coaster
At last, the roller coaster jerks to a halt in the station, and you stagger off the 

train, your mind reeling with important principles and bizarre consequences.

'Well, I survived!' you exclaim 'but oh how my head is spinning!'

I am afraid we have not quite finished yet though. Gently, I lead you by the 
arm round a corner where we stop in front of a huge gateway over which is 
blazoned in scary letters the single word OBLIVION.

'What's this?' you ask. 

It is another roller coaster.

'Hell's teeth! Is it as bad as the other one?'

Well, not so bad really - but I have to admit it is a bit of a cheat. There is 
another roller coaster which is such a rough ride that hardly anyone can stomach it 
but this one has been specially designed to give you just a flavour of what the real 
one is like. Are you ready to try it?

'I suppose so. But why is it called OBLIVION?'

Wait and see! But first, while we wait in the queue, I must tell you about 
Einstein's second Big Idea. The Fundamental Principle of Special Relativity 
(Einstein's first Big Idea) dealt with observers in uniform motion. The second 
Fundamental Principle (on which the General Theory of Relativity is based) deals 
with observers in accelerated motion. It is this.

The Fundamental Principle of General Relativity
The laws of physics in a uniformly accelerated frame of reference are  
identical to the laws of physics in a gravitational field.

or, to put it another way:

It is impossible to carry out any experiment inside a closed laboratory  
which will determine whether the laboratory is being accelerated  
uniformly or whether it is situated in a gravitational field.

'Well that's silly. Surely you can always tell if there is gravity. All you have got  
to do is drop something. If it falls - there is gravity!'

Not at all. Suppose you are in deep space on a journey to a distant star perhaps. 
You may be moving, you may be stationary, it doesn't matter. All that matters is 
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that there are no stars or planets nearby so there is no gravity. You have just 
finished reading a chapter of your favourite book – 'The Hitch-hikers Guide To 
The Galaxy' – and, as is your custom, you simply park it in front of you where, 
because of the weightless conditions inside the spaceship, it hovers obediently. 
Suddenly, it falls to the back of the ship, accelerating as it goes. At the same time 
you feel your own body pressed into the couch on which you have been lying. 
What are you to think? Have you suddenly arrived at your destination where 
gravity is normal again? Possible perhaps. But it is a lot more likely that the 
captain of the ship has fired the rocket engines and that you and the rocket are 
simply accelerating. The book did not fall because of gravity. In fact it didn't really 
fall at all. It simply stayed where it was and the rocket accelerated forwards and 
caught up with it. Likewise, you weren't pressed into the couch by the force of 
gravity, no, it was simply the thrust of the rocket engines, transferred to you 
through the couch, which made you accelerate forwards with the rocket.

So the effects of acceleration look, on the face of it, to be just like the effects of 
gravity. But are they? Is there any way to tell the difference? To answer this 
question, we must have a closer look at exactly what we mean by mass.

Has it ever struck you as rather odd that two objects of different mass should 
fall with the same acceleration in a gravitational field? If not, then you must be 
either very clever or you haven't thought about it at all. After all, the great Greek 
scientist and philosopher Aristotle thought that it was self evidently obvious that 
heavy objects would fall faster than light ones and he carried the weight of 
intellectual opinion with him for over two thousand years. It was Galileo who first 
saw the illogicality in Aristotle's theory. His argument went something like this.

"According to Aristotle, a heavy stone should fall twice as fast as a light stone. 
Now, if you tie a heavy stone to a light stone, the heavy stone will pull the light 
one down faster while the light one will tend to stop the heavy one from travelling 
so fast. The combination will, therefore, fall at a speed which is intermediate 
between the speeds of the two stones on their own. But hang on a minute – if you 
tie a light stone to a heavy one, surely you make a stone which is heavier than 
either and therefore, according to the theory, should fall faster than either? There is 
an inconsistency here, therefore the original premise is false."

Fifty years later, Isaac Newton vindicated Galileo by setting out a wonderful 
theory of mechanics based on two central ideas - the idea of a force and the idea of 
mass. which are brought together in the central relation

F = ma

In principle, you can measure the mass of an object by applying a standard 
force to it (eg using a 'STANDARD' firework) and measuring its acceleration.
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The greater the mass, the greater its inertia will be and hence the smaller the 
acceleration. Mass measured in this way should properly be called inertial mass.

But Newton did not stop at explaining all the laws of dynamics. Like Einstein 
after him, he also went on to explain the laws of gravity using the same 
fundamental concepts of force and mass. His second Big Idea was this: between 
two (small) masses M and m separated by a distance r there exists an attractive 
force F which is proportional to the product of the masses and inversely 
proportional to their separation. In symbols:

F = G Mm
r2

where G is a constant equal to 6.67 x 10-11 kg-1m3s-2.

This equation gives us an alternative and quite independent method of 
measuring mass. All we have to do is measure the force of gravity on the mass (eg 
by hanging it from a standard spring) in a standard gravitational field (eg the 
Earth's field.)

Mass measured in this way should properly be called gravitational mass.

It stands to reason (though it is neither obvious nor necessarily true) that, if you 
strap two identical objects together, you will double both the inertial mass and the 
gravitational mass – and it is this assumption that is at the heart of Galileo's 
argument. The heavy stone has twice the force of gravity on it - but then it needs 
twice the force in order to accelerate the same amount!

While it may stand to reason that two identical objects with the same inertial 
mass will have the same gravitational mass, there is absolutely nothing in 
Newton's theory which prevents two objects with the same inertial mass, but made 
of different materials, from having different gravitational masses. It is 
conceivable, for example, that dense materials like lead or gold would weigh more 
(or less) than their inertial mass would suggest.

'That's amazing! May be there are substances which we don't know about that 
have inertial mass but don't weigh anything at all!'
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As far as Newton's theory is concerned, that is certainly possible but all the 
evidence we have to date strongly suggests that, whatever substance an object is 
made of, inertial and gravitational mass are exactly the same. Even if there were 
tiny differences, we would notice it immediately. It would, for example, mean that 
the giant gaseous planets would orbit the Sun at a different rate from the smaller 
rocky ones (over and above the normal differences that is); it would mean that an 
aluminium satellite would have a different orbital period from the titanium shuttle 
which launches it; it would mean that the Earth would have a different orbit round 
the Sun than its own oceans which would, consequently, appear to fly off into 
space of their own accord! It is fairly evident that none of these things happen.

There is, therefore, plenty of evidence to show that the ratio of inertial mass to 
gravitational mass is the same for all materials, everywhere. But why? According 
to Newton's theory, there is no reason why, they just are. But according to 
Einstein, there is a very good reason: it is simply the Fundamental Principle of 
General Relativity - The laws of Physics in a uniformly accelerated frame of  
reference are identical to the laws of physics in a uniform gravitational field.

So just as the Fundamental Principle of Special Relativity explains the 
observed constancy of the speed of light, so the Fundamental Principle of General 
Relativity explains the observation that all objects fall with the same acceleration 
in a gravitational field. We can summarise this conclusion as follows:

Reassuringly Normal Consequence Number 16
Inertial mass and gravitational mass are one and the same thing.

But you haven't paid good money to the roller coaster owners just to discover 
Reassuringly Normal Consequences so, now that we have reached the summit of 
the first hill and are ready to go, here is the next Bizarre one:

Bizarre Consequence Number 17
Gravity bends light.

'That's ridiculous. Light can't bend. And I can tell you why too! When we say  
'light travels in straight lines' we aren't stating an experimental fact; the way light  
travels defines what we mean by a straight line!'

Mmm... yes... you've got a good point there...

But before I have a chance to think up a suitable reply the catches on the roller 
coaster are suddenly released and we are plunging in free fall down into a gaping 
black hole.
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Chapter 8 - The bending of light
This is easy to understand. Imagine that you are in a rocket playing with a laser 

pen. Suddenly, just at the moment when the Hitch-hikers Guide to the Galaxy 
shoots to the back of the rocket, you see the laser beam bend as well. Of course the 
reason is obvious. The rocket is accelerating so that in the time it took for the light 
to cross the width of the rocket, the rocket had moved an extra distance causing the 
spot to hit the wall of the rocket further behind its original position.

I
O
P

c

al/c

If the rocket has a width of  l and is accelerating with an acceleration of a then 
in the time it takes for light to cross the width of the rocket t (where t  = l/c) the 
rocket's speed will have increased by dv  =  at  =  al/c. (It is here assumed that this 
increase is much smaller than the speed of light so we don't have to take any 
special relativity considerations into account)

The angle of deflection of the beam when it hits the wall (in radians) will 
therefore be approximately al/c2.

Now from the Fundamental Principle, what is true in an accelerating system is 
true in a gravitational field so it follows that when a beam of light crosses a 
gravitational field of strength g (= a), it will bend through an angle a where:

 = l g
c2

It is also quite easy to show that the distance it will fall s is given by

s = 1
2

l 2 g
c2
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Not surprisingly, this turns out to be rather small where the Earth's gravity is 
concerned. A laser beam shining horizontally over a distance of 1 km in the Earth's 
gravitational field falls by only 5 x 10-11m. That is about a quarter of the diameter 
of an atom!

On the other hand, when light from a distant star passes close to the surface of 
the sun, it is significantly deflected and, what is more, this deflection can fairly 
easily be measured. It causes the stars immediately behind the Sun to appear 
further away from the Sun than they really are.

Actual position of star
Apparent position of star

Sun

The idea that gravity could bend light is not new, however. It would not have 
surprised Newton in the least who always thought light was a stream of particles 
which were influenced by gravity. On the other hand, the proponents of the wave 
theory of light, Huygens and, later, Maxwell, would have hotly denied the 
possibility. After all, gravity acts on mass, how could it possibly affect an 
electromagnetic wave? And yet it does.

[I have to add a cautionary note here: in fact, gravity bends light by more than 
the amount calculated above. The flaw in our argument lies not in the 
approximation that the speed of the rocket is much less than the speed of light, but 
in the assumption that space and time are unaffected by the acceleration of the 
rocket (or, equivalently, the gravitational field). When the effect of the distortion 
of space and time is taken into account as well, the full General Theory predicts an 
angle of deflection of exactly twice the amount calculated above and the 
predictions of the full theory have been verified experimentally many times since 
Einstein first calculated the size of the effect.]
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Down we go again
'Well except for that bit about the bending being twice what it should be which  

I didn't understand, that was pretty easy. Doesn't this roller coaster have anything  
a bit more exciting to offer?'

Well yes, it does - but first we have another rather familiar hill to descend. 
Remember - just hang on to that Principle!

As we cruise over the crest of the hill the roller coaster tilts over sideways and 
we find ourselves looking down a deep shaft. At the bottom of the shaft there are 
floodlights and workmen with clocks and measuring sticks - but they don't seem to 
be working very quickly - and their measuring sticks look very short - and, for 
some reason, they seem to be using red floodlights.

But all too soon the roller coaster rights itself and begins to hurtle down the 
next slope towards:

Bizarre Consequence Number 18
Clocks go slow and rulers shrink at the bottom of a well.

'Uh?'

53



Chapter 9 - Gravitational Time Dilation
Suppose you are playing with your red laser pen in the accelerated rocket but 

instead of shining it across the rocket, you shine it straight towards the front of the 
rocket. What, if anything, will happen to the light then?

'I know the answer to that one! It will just go straight forwards at the speed of  
light!'

Well done! You have obviously learned your lessons well. But something 
happens, all the same.

'What?'

Its colour changes. You see, by the time the light has travelled a distance h up 
the rocket (relative to you in the rocket, that is), the rocket has increased its speed 
by dv = ah/c. What this means is that, in effect, the receiver at the front of the 
rocket is continually moving away from the source with speed ah/c. Now if we 
restrict ourselves to small heights and small accelerations (ie if ah << c) this 
produces a Doppler shift equal to:

 = 0 1ah/c2

Now we know that the effects of gravity are exactly the same as the effects of 
acceleration so we must conclude that, when light climbs up through a 
gravitational field, its wavelength increases according to the formula:

 = 0 1gh /c2

where g is the gravitational field strength (assumed uniform over the distance 
h)

I am sure you know that the gravitational potential energy of a mass m lifted a 
height h in a gravitational field of strength g is mgh. You may also know that 
gravitational potential (f) is defined as the gravitational potential energy per unit 
mass. It follows that when you move up a distance h through a gravitational field 
g, the change in gravitational potential df is equal to

 = mgh
m

= gh

This means that we can write our equation for the Doppler shift more generally 
like this:

 = 0 1/c2

The greater the gravitational potential difference which the light has to climb, 
the greater the Doppler shift which is produced. On the other hand, because of the 
c2 term, the shift is very small indeed. The gravitational potential at the surface of 
a star of radius R and mass M is equal to:
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 = −GM
R

(The minus sign is necessary because the gravitational potential is defined to 
be zero at an infinite distance from the star. At the surface it is less than zero. For 
the proof of this formula see the appendix)

In rising from the star, a beam of light passes up through a change in 
gravitational potential equal to:

 = GM
R

so the formula for the gravitational red shift experienced by a beam of light 
emitted from the surface of a star of mass M and radius R is:

 = 01  GM
Rc2 

For the Sun, M = 2 x 1030 kg, R = 7 x 108 m so the expression GM/Rc2 

computes to 2 x 10-6. A Doppler shift of less than one part in a million is very 
small and corresponds to a recession speed of only 600 ms-1 - much less than the 
Doppler shift in wavelength induced by the thermal motion of atoms on the 
surface of the Sun, which makes the effect difficult to detect. Nevertheless, the 
effect is real and, in the case of more massive stars, it should not be ignored. What 
is more important at the moment is the implication this analysis has on the rate of 
passage of time at the two ends of the rocket.

Suppose that instead of shining a laser pen towards the front of the rocket, you 
use it to send timing signals to a fellow astronaut situated at the front. If, by your 
watch, you send timing signals every T0 seconds, these will be Doppler shifted just 
like the light beam and your friend will receive timing signals every T seconds 
where:

T = T 01/c 2

What this means is that the clock at the back of the (accelerating) rocket goes 
slower than the clock at the front. It also means that a clock at the bottom of a well 
goes slower than a clock at the top. What is more, this effect has actually been 
demonstrated! Unbelievable though it may seem, the effect was observed at 
Havard university in 1960 over a distance of 22.5 m. (if you are wondering why 
such a strange distance it is because that is the height of the stair well at the 
Jefferson Physical Laboratory!) A quick calculation shows that the Doppler shift 
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over this distance is equal to 2.5 x 10-15. What the Havard scientists, Pound and 
Rebka, did was to build a gamma ray source and a gamma ray detector so finely 
tuned that, if the frequency of the source changed by only this amount, the detector 
would reject the signal. The source and the detector were placed together at the 
bottom of the shaft and matched exactly. Then the detector was taken upstairs and, 
as expected, the signal was rejected. To confirm the effect absolutely, the source 
was raised at a steady speed towards the detector. The blue doppler shift caused by 
the speed was just sufficient to counteract the red shift caused by the gravity field 
and the detector sprang into life again. What was this speed? 2 x 10-15 times the 
speed of light, of course. You want me to calculate it for you? All right. It works 
out to be 2.7 millimetres per hour!

The effect is also measurable using atomic clocks in a high flying aircraft. You 
may recall that the velocity time dilation effect of a jet plane flying at 200 ms-1 for 
10 hours was 8 ns slow. Now suppose that the plane was flying at a height of 
10,000 m during this time. The change in gravitational potential between this 
height and the ground is approximately gh = 10 x 10,000 = 100,000 J kg-1 so the 
clock in the plane will run faster than the clock on the ground by a factor of gh/c2. 
For a period of 10 hours, this works out to be 40 ns, so the effect of gravitational 
time dilation in this case is actually larger, and in the opposite sense, to the effect 
of velocity time dilation.

The derivation of the gravitational time dilation formula presented so far has 
two disadvantages. Firstly, I have used an approximate formula for the Doppler 
shift only applicable for small values of h and a. More seriously though, it ignores 
the second order effects of special relativity due to the fact that the increase in 
speed of the rocket during the time t (whose time t anyway?) is not exactly equal 
to at. In order to generate a formula which is applicable to situations in which ah is 
large, we need to look at another way of producing artificial gravity.

Science fiction writers are fond of describing large futuristic space stations as a 
large spoked wheel, spinning slowly on its axis.
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As the station spins, astronauts at the periphery subjectively feel an outward 
force, popularly (and correctly) known as the centrifugal force which feels to them 
just like gravity. From the point of view of an observer in a shuttle craft waiting to 
dock in the centre of the station, we can see that what is in fact happening is that 
the metal structure of the station is exerting an inward force on the astronauts 
which is giving them an inwards centripetal acceleration causing them to move in 
a circle.

Correction. I am not allowed to say that that is what is in fact happening. 
General Relativity tells us that the astronauts point of view is just as valid as ours. 
So what does the universe really look like from the point of view of the astronauts 
on board the space station? To them, the station is, of course, stationary. But the 
station is generating a rather strange form of gravity which is zero at the centre of 
the station and which increases steadily as you move towards the rim. Moreover, 
the force of gravity is outwards, not inwards.

Now you know that the centripetal acceleration of a mass m rotating round in a 
circle of radius r with angular speed w is equal to rw2 so the strength of gravity at 
the rim will be: g = R2 (where R is the radius of the station) and the 
gravitational potential difference between the centre and the rim will be given by:

 = ∫
0

R

r 2 dr = ½R22

What about clocks placed at the centre and at the rim? From our point of view 
outside the station, we can see that the clock at the rim is going more slowly than 
the clock at the centre because the clock at the rim is moving while the clock at the 
centre is not. In fact we can write down the relation between the time as measured 
by the rim clock Trim in terms of the time measured by the clock at the centre Tcentre 

as follows using the special relativity time dilation formula:

T rim = 1
1−v2/c2 T centre = 1

1−R22/c2 T centre

More generally, by putting R2w2 = 2Df we can write down the general formula 
for the relativistic time dilation between two points where a gravitational potential 
difference exists as follows:

T = 1
1−2/c2

T 0

 (If you compare this formula with the similar formula on page 55 you will see 
that the latter is simply the binomial expansion of this one approximated to the 
second term.)

Now the astronauts on board the space station will observe exactly the same 
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time dilation effect as we do - it is just that they will explain it differently.

(It is very important to note that, like velocity time dilation, gravitational time 
dilation is a relative phenomena which depends not on the local strength of 
gravity, but on the difference in gravitational potential between two points. At the 
very centre of the Earth, for example, there is no gravity - but clocks will still run 
more slowly there.)

So much for clocks - what about rulers? This is where things start to get 
difficult. Suppose that, from our stationary birds eye view in the shuttle, we watch 
one of the astronauts measuring out the radius of the space station with a metre 
ruler. Since the ruler is always at right angles to its direction of motion, we can see 
that it remains the same length and his measurement of the radius agrees with ours, 
namely R.

But what happens when he measures the circumference? We see that his ruler 
is contracted because of the speed and so, instead of getting the expected value of 
2pR, he ends up with an answer that is bigger than this! What is he to make of 
this? Does gravity alter the fundamental mathematical constants like p? No, I think 
that is going too far. What we can say is that gravity distorts the structure of space 
in such a way that, in a non-uniform gravitational field, the circumference of a 
circle is no longer equal to 2p times the radius. In fact this is such an important 
conclusion that it deserves a box of its own.

Bizarre Consequence Number 19
In a non-uniform gravitational field, space is non-Euclidean; the  
circumference of a unit circle is not equal to 2p and the angles of a  
triangle no longer add up to 180º.

'So what happens to rulers in a gravitational field? Do rulers shrink or what?'

Well I find it difficult to give a straight answer to that question. It is true that if 
I measure the radius and the circumference of a large star with a metre ruler (!) I 
will find that the circumference is less than 2p times the radius. (The reason why it 
is less not more is that real gravity is an attractive force, unlike the centrifugal 
effect inside the space station which is an outward force.) This would appear to 
suggest that as you take the ruler down to deeper and deeper depths inside the star 
- ie to lower and lower gravitational potentials - the ruler shrinks. And because 
gravitational potential is a scalar quantity, the ruler has to shrink in all directions, 
not just parallel or perpendicular to the local gravitational field. However, if a ruler 
shrinks in all directions, what sense does it make to say that it shrinks at all? The 
truth is that the effect of gravity is far more subtle than just a question of shrinking 
rulers. No, gravity actually distorts the space in which the rulers exist. But to go 
any further along that road requires the use of mathematical concepts far beyond 
my competence. 
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Oblivion

Bizarre Consequence Number 20
It is possible for an object to be so massive and/or dense that light  
cannot escape from it and, in consequence, is completely invisible.

'Wow! That was a bit weird' you shout as the roller coaster shoots up to the top 
of the next hill. 'Where do we go now?'  you ask.

I don't have time to tell you about the last bizarre consequence because the 
roller coaster track ahead of us goes horizontally for a few meters and then - just 
stops!

As the train reaches the end of the track it tilts over 900 and, for an instant we 
are suspended over the most terrifying sight. Below us is a deep, interminable 
shaft. Along the sides of the shaft are electric lights at regular intervals but as we 
look down the shaft, the lights in the distance get redder and redder until they fade 
from view completely. At the bottom of the shaft - no, there is no bottom - there is 
just an aching blackness.

Suddenly we are in free fall; the lights are flashing past us faster and faster; as 
we look up, the shining blue sky which we left behind is turning first violet, then 
ultra violet, and now begins to bathe us in X-rays and even g-rays; and then the 
aching blackness which we saw from above appears to grow in size until it is all 
around us, even above us. The bright patch of gamma-rays which was our home on 
Earth is vanishing fast and suddenly, it is gone. We are completely alone in the 
darkness with nothing to tell us where we are or how fast we are travelling except 
that we begin to experience a very unpleasant sensation of being stretched and 
squashed at the same time. Rapidly the stretching and squashing increases to the 
point where our bodies are dismembered and pulled into long thin strands, but we 
are past pain - we have passed into oblivion . . .
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Chapter 10 - Black Holes
In 1783, the Rector of Thornhill parish church in Yorkshire, a man called John 

Michell wrote to the Royal Society with an extraordinary idea. Newton had 
showed that for every planet there was a critical speed called the escape velocity 
which it was necessary to achieve if you were to throw a rock off the surface of the 
planet into space and it is easy to show that, for a planet (or star) of mass M and 
radius R, the escape velocity v is given by the formula:

v escape =  2GM
R

Michell's idea was this. What if a star was either so massive, or alternatively, 
so small that the escape velocity was equal or greater than that of light? According 
to the corpuscular theory of light which was still popular at that time, at least in 
England, light would never be able to escape from such a star and even though it 
was burning brightly, it would look to us completely black. The radius of such a 
'black star' would be equal to:

R = 2GM
c2

The idea did not catch on. Within a couple of decades, Thomas Young had 
shown pretty conclusively that light was in fact a wave and therefore probably 
immune to gravity. Nevertheless, we have now shown that light is indeed 
susceptible to gravity and that, as it climbs away from the surface of a star, it is not 
slowed down - it is red-shifted instead.

The modern equivalent of Michell's idea is therefore this. Is it possible for a 
star to be so massive that light is red-shifted all the way to infinite wavelength (or 
zero frequency)? In which case it would become completely invisible just like 
Michell's corpuscles. To answer this question we must use the accurate formula for 
gravitational time dilation:

T = 1
1−2/c 2

T 0

and ask ourselves under what circumstances will T (the observed rate of flow 
of time on the surface of the star) to become infinite. The answer is of course 
when:

1 − 2/c2 = 0

2/c2 = 1

Now, the gravitational potential at the surface of a star is (see Appendix H)

 = −GM
R

so putting Df = - f, we get
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2GM
R c2 = 1

and hence

Rs = 2GM
c2

which happens to be exactly the same formula that Michell proposed in the 
first place!

This is the radius of a Black Hole - the so called Schwarzschild radius. (As we 
have seen, the actual radius, ie the distance from the centre to the edge, is in 
general larger than this and for a black hole it is probably infinite. The radius used 
here is defined as being the circumference divided by 2p.)

For a black hole with the same mass as the Sun, Rs turns out to be almost 
exactly 3 km. It is clear that our own Sun is a long way from being a black hole 
but theoretical physicists and astronomers are now fairly convinced that most stars 
with a mass greater than about 5 solar masses will end their lives by turning into a 
black hole. Moreover the existence of supermassive black holes at the centres of 
galaxies is widely accepted and the existence of tiny mini-black holes is a 
possibility.

What would the mass of a black hole the size of an atom be? The answer is an 
incredible 1017 kg which is about the mass of an iron meteorite 32 km across. If the 
Earth were to encounter one of these, it would either cause a massive explosion 
big enough to obliterate all life on Earth, or, more likely, it would drill a neat hole 
through the Earth and come out the other side!

The gravitational field strength at the surface of a black hole (or the Event 
Horizon as it is more properly called) is equal to

gs = GM
Rs

2 = c2

2 Rs

What this means is that really big black holes have very modest gravitational 
field strengths at their event horizons. For example, a black hole with a mass of 1.5 
trillion solar masses (that is about a thousand galaxies) would have a 
Schwartzchild radius of about half a light year and a gravitational field strength at 
the surface of 10 ms-2 – the same as Earth. If you wandered close to or even inside 
this black hole, you would not feel anything that you do not feel every day here on 
Earth – but, of course, you wouldn't be able to get out, however hard you tried!

It is instructive, when considering the possibility of black holes of varying 
sizes, to consider the density of the material inside the hole. (For our purposes here 
we shall assume that the hole is 'filled' with a material on uniform density up to its 
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event horizon.) Putting

M = 4
3
R s

3

we obtain

Rs =
8RsG

3c2

so

Rs =  3c2

8G
= 1.26×1013



What this means is that the smallest black hole which can be made with 
ordinary matter (eg iron of density 7000 kg m-3) will have a radius of 1.5 x 1011 m. 
By coincidence, this happens to be exactly the same as the orbital radius of the 
Earth. So imagine the whole of the solar system out to the Earth filled with iron 
and you have a simple black hole. It would have a mass of 51 million Suns and a 
gravitational field at the surface of 30,000 g!

Actually this scenario is quite academic because, as I have said earlier, it only 
needs about 5 solar masses of ordinary matter to make a black hole owing to the 
inability of ordinary matter to withstand the crushing effect of gravity. On the 
other hand, if we choose to make a black hole out of very rarefied matter, then the 
'pressure' at the centre does not have to be very great at all. In fact, we could be 
living inside a black hole right at this very moment! If so, the last formula quoted 
above could be telling us something very important about the relation between the 
amount of matter in the universe and the density of material that it contains.

Current theories about the size of the universe suggest that it might have a 
'radius' of about 15 billion light years or 1.4 x 1026 m. Plugging this figure into the 
formula gives an average density for the universe of about 8 x 10-27 kg m-3. Now 
the mass of a single hydrogen atom is 1.7 x 10-27 kg, so this density corresponds to 
about 5 hydrogen atoms per cubic metre.

It is exceedingly difficult to estimate the average density of the universe but the 
best present day estimates of the average density of all the observable matter in the 
stars and galaxies is about 0.3 x 10-27 kg m-3, that is one thirtieth of the required 
value. When you consider by what disparate routes the two figures were arrived at 
in the first place, it is surprising that it comes anywhere close at all. What it means 
is this. If the average density of the universe is less than the critical density, we are 
living in what is known as an open universe. The universe is expanding now and 
will continue to expand for ever. If, on the other hand, our estimates are wrong 
and/or we discover other sorts of matter which we have not included so far and the 
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density of the universe is greater than the critical density, then we are effectively 
living inside a black hole; the universe will one day stop expanding and will fall 
back in on itself.

The most satisfying result would be that the universe has exactly the right 
critical density to make it into a perfect black hole - not an atom more, not an atom 
less.

If this is the case, it will not be by coincidence. Just as it is no coincidence that 
everyone agrees on the speed of light or that gravitational mass is exactly equal to 
inertial mass, there will have to be some over-arching principle of cosmology 
which makes the following conclusion inevitable:

Profound consequence of the (as yet unknown)  
Fundamental Principle of Cosmology
Every viable universe has a density equal to its critical density.

Perhaps some 21st century Einstein will come up with a brilliant new principle 
which will transform our understanding of the universe we live in and explain why 
things are as they are.

Are you that person?

You never know – perhaps you are!

Don't forget – even Einstein failed his exams on occasions too! 
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The Last encounter
. . . but just when we can stand it no more, the stretching and squashing begin 

to ease and a violet light appears ahead of us which appears to spread wider and 
wider turning bluer and bluer. The electric lights appear again but they are not like 
our lights. The aching blackness recedes and suddenly we tumble out into a 
graceful landscape with a blue sky, green grass and distant purple-headed hills.

'What the **** happened then?' you say. (You always were prone to colourful 
language.)

It is true that there is something strange and unfamiliar about everything. The 
grass has a strange feel and the sky is not quite the right colour. I pick up a stone 
and let it drop 

 'Well the laws of Physics seem to be much the same here.'

As we look round we find that we are standing on the edge of a vertical shaft. 
Peering down we see the electric lights reddening in the distance and that aching 
void again.

We have fallen through a wormhole into another universe.

Turning suddenly, we see a strange figure standing nearby with an outstretched 
hand.

"Welcome" he says, "Are you from Earth? Visitors from your planet do 
drop in from time to time . . ."
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Appendix A - The 1g rocket problem
Consider a rocket accelerating from rest at a constant acceleration of 1g. What 

do we actually mean by this, taking relativistic effects into account? Obviously the 
rocket cannot go on increasing its speed at a constant rate (from the point of view 
of someone who remains at rest), because it would eventually travel faster than 
light. What happens is that the rocket approaches the speed of light exponentially 
like this.

So what do we mean by constant acceleration? Well, from the point of view of 
the astronauts on board, what we mean is that they experience a constant artificial 
gravity field which is produced by the steady thrust of the continuously firing 
rocket motors, which feels exactly like 1g back on Earth. To them, the spacecraft 
is permanently stationary but the universe outside the ship appears to be passing 
by faster and faster in the same way as in the illustration above.

Now it might appear that we need to use the ideas of General Relativity here, 
but that is not necessary. We just need to define carefully what we mean by this 
sort of acceleration. In a Newtonian world, if an object travelling at a speed v 
accelerates with an acceleration a for a small time dt, the final speed is given by

vv = va  t

In a relativistic world, however , we must use the relativistic formula for the 
addition of velocities (see appendix *), ie:

vv = va t
1v a  t /c2

This leads to

vv1v a t /c2 = va  t

vv2 a t /c2 vv a v. t /c2 = va t

The two v's cancel - and we can also cross out the term which contains two d 
terms because in the limit, this term will be much smaller than the single d terms 
so:
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v = a  t−v 2a  t /c 2

v = a  t 1−v2/c 2

Now all we have to do is to integrate this expression to find out how v varies 
with t.

First separate the variables:

 v
1−v2/c 2

= a  t

 v
c 2−v2

= a
c2 t

Now integrate:

∫ 1
c2−v2

d v = a
c 2 t

Fortunately this is a standard integral which my maths book tells me is:

1
c

tanh−1 v
c

= a
c2 t

(Since v = 0 at t = 0, there is no constant of integration). A bit of simple 
manipulation leads us to the first result:

v = c tanh a
c

t

NB the time t referred to here is the integral of the proper time, which is the 
journey time - ie the time as experienced on board ship. So this formula tells you 
how fast you will be going after you have been travelling for a time t.

Next it would be nice to know how far you get in this time. To do this we must 
take into account the fact that the faster you go, the more contracted the miles that 
pass by are! In a Newtonian world the distance ds travelled in a short time dt at a 
speed v is:

 s = v t

but in a relativistic world, you actually get a lot further because all the 
distances outside your ship are length contracted by a factor of g so:

 s = v  t

 s= v
1−v2/c2

 t

Substituting our formula for the speed of our ship after a time t we get:
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 s = c tanh at /c
1− tanh2 at /c

 t

Now fortunately, 1 - tanh2 x = sech2 x, and of course tanh x = sinh x / cosh x so 
this horrendous expression simplifies down to just:

 s = csinh at
c
 t

which even I can integrate!

s = c2

a
cosh at

c
K

We can't ignore the constant of integration this time because at t = 0, s = 0 but 
cosh(0) is 1 not zero. The final result is therefore:

s = c2

a cosh at
c
−1

The third thing we should like to know is how old will our friends be when we 
get back! Well, for every second we travel at a speed v our stay-at-home friends 
will age g seconds ie:

 t home =  t
 1−v 2/c2

t home = ∫ 1
1−tanh 2 at /c

d t

t home = ∫ cosh at
c

d t

from which we obtain:

t home = c
a

sinh at
c

(the constant of integration is zero because sinh(0) = 0 as required)

I find it particularly pleasing that the solution to the problem of the 1g rocket 
has such simple and elegant answers, particularly when we work in years and light 
years. In these units, both a and c are equal to 1. If we think of a round trip which 
is to take T years (as measured on board), the outward journey will consist of two 
phases, an acceleration for T/4 years, and a deceleration phase of the same length. 
The return journey will be just the same.
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The maximum speed reached will be:

V = tanh T
4

The distance you get to will be:

S = 2cosh T
4 −1

and the age of your newborn baby son when you get back will be:

T home = 4 sinh T
4

To give you an idea of what these expressions look like in practice, here is a 
table of results:

0 0 0 0
1 24 0.1 1
2 46 0.3 2
3 64 1 3
4 76 1 5
5 85 2 6
6 91 3 9
7 94 4 11
8 96 6 15
9 98 8 19
10 99 10 24

Journey 
time (years)

Maximum 
speed 

reached (% 
of light)

Distance 
reached 

(light years)

Age of your 
baby son 
when you 
get back 
(years)
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It is worth noting that a return journey to a star 10 light years away would only 
take 10 years of astronaut time (24 years back at home). If you are prepared to 
journey for 20, 30 or 40 years, you could get to stars 150, 1800 and 22,000 ly 
away respectively (that is a quarter of the way across the galaxy!) and if you are 
not bothered about coming home you could travel to the edge of the known 
universe in a mere 47 years (although whether there would be any universe left by 
the time you got there is another matter!).
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Appendix B - Length Contraction.
Using the context of the river race. if we see Albert and Beatrice arrive back at 

exactly the same instant and knowing that Beatrice cannot row faster than Albert, 
we must conclude that Beatrice has a shorter distance to row.

How much shorter? Suppose that Albert rows a distance lA and Beatrice rows 
lB.

Time for Albert to finish =
2lA

 c2−v2

Time for Beatrice to finish =
l B

c−v


l B

cv
=

2 l B c
c2−v2

Now these must be equal so:

2 l A

 c2−v2
=

2 l B c
c2−v2

from which we get:

lB = 1−v2/c2 . l A

What this means is that from the point of view of a stationary observer, a rod of 
proper length l0 (ie whose length is l0 when at rest) will have a length l given by

l = 1−v2/c 2 . l 0 = l 0/

when it moves with a velocity v in a direction parallel to its length. (It will 
always appear to have the same length l0 perpendicular to the direction of motion.)

70



Appendix C - Time on a distant star
How would you synchronise two clocks which are at rest but in different 

places?

One way to do it would be this:

• measure the distance l between the clocks

• set clock A to zero (but do not start it)

• set clock B to read time l/c (but again do not start it)

• start clock A and simultaneously send a pulse of light towards clock B

• when the pulse of light reaches B, start clock B

The two clocks will now be synchronised, at least to an observer at rest with 
respect to the two clocks.

But what if I were to watch you synchronising a pair of clocks like this while 
you sailed by me (in the direction B to A) at a speed v? I would disagree about 
your calculation in two ways. Firstly the distance between the clocks would be 
contracted by a factor of g. Secondly, while the light beam was travelling from A 
to B at what is to me a constant speed c, B would be racing towards the light beam 
at a speed v. To me, the light beam would be gaining on the clock at a relative 
speed of c + v so the time taken for the beam to get from A to B would be:

T = 1−v2/c2 . l
cv

This can be rearranged and simplified as follows:

T =
l
c
 c2−v2

cv
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T = l
c   cv  c−v 

 cv  cv 

T = l
c  c−v

cv

What this means is that while you set clock B to read l/c, I think you should 
have set it to the smaller time above. To put this another way, it seems to me that 
all your supposedly synchronised clocks ahead of you are running behind the true 
time and all those behind you are running ahead of the true time.

Now the difference in the two times is equal to:

T = l
c

− l
c  c−v

cv

We can simplify this formula considerably if we assume that v is a lot smaller 
than c. First we rewrite the formula as follows:

T = l
c
1 − 1−v /c½1v /c½

hence using the Binomial Theorem we get:

T = l
c
1 − 1−½v/c...1½v /c...

from which, by rejecting all second order terms we arrive at:

T = lv
c2
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Appendix D - The addition of speeds
Consider a spaceship A of length lA travelling past you at a speed vA passing a 

second spaceship B of length lB travelling in the opposite direction at a speed vB 

(both speeds measured with reference to you). The question we need to answer is 
what speed vX does B appear to be going past the astronauts in A?

We need to consider two vital events; first contact, when the nose cones of the 
two spaceships meet and second contact when the two tails part.

What is more, let us suppose that these two events occur at the same place 
from your point of view. This means that the spaceships have to be just the right 
length so that they both pass you in the same time. Note that from your point of 
view, both ships are contracted by the factors gA and gB respectively.

Now what does the commander of ship A see? He sees you travelling past at a 
speed vA and also ship B travelling past at some greater speed vX.

Note that to the occupants of ship A, B is length contracted by a factor gX.

Now commander A can calculate the time between first and second contact in 
two ways. First he sees you travelling a distance lA at a speed vA. Secondly, he sees 
ship B (whose length is contracted to lB/gX) travel a distance equal to lA + lB/gX at a 
speed vX. It follows that:

l A

vA
=

lAl B/ X

v X

l A vX = l A vAlB vA /X

lAv X−vA = l AvB / X

An identical argument from commander B's point of view leads to:

l Bv X−vB = l Bv A /X
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(It should be pointed out that because of the invariance of velocity, if 
commander A sees ship B moving at a speed vX then commander B will see ship A 
moving at exactly the same speed and contracted by the same g factor.)

Now multiplying the two equations together eliminates the lengths of the two 
ships and leaves us with a relation between the three velocities. The rest is just 
algebra.

vX−vA . vX−vB = vA vB /X
2

Now

X = i
1−v x

2/c 2

so:

1/ 2 = 1−v X
2 /c2 = c 2−v X

2 /c 2

hence:

vX −vA . vX−vB = vA vBc
2−v X

2 /c2

from which we obtain by straightforward algebra the result we desire:

v X =
v AvB

1vA vB/c
2
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Appendix E - Travelling 'faster than light'
If you travel for a distance x at a speed v, owing to length contraction, the 

proper time interval (ie the number of years you age during the journey) between 
setting out and arriving will be:

T =
x
 v

= 1−v2/c 2 . x
v

= c2−v2 . x
cv

T = c2/v 2−1 . x
c

A light beam, on the other hand, will actually take:

T = x
c

If we put these two expression equal, we can find out at what speed it is 
necessary to travel in order to get the effect of travelling as fast as light.

c2/v 2−1 . x
c

= x
c

c 2/v 2−1 = 1

c2/v2−1 = 1

c2 = 2v2

v= c
2

ie 71% of the speed of light.

Let me just say again what this means. You are not actually travelling faster 
than light – but you will reach Alpha Centauri, 4 light years away, in only 4 of 
your years.
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Appendix F - Relativistic Kinetic Energy
Suppose a mass of rest-mass M0 is accelerated from rest by a constant force F 

for a time t. 

Under Newtonian mechanics, the acceleration of the mass a will be

a = f
M 0

the distance travelled s will be

s = ½ a t 2 = F t 2

2M0

and the final speed reached will be

v = at = Ft
M 0

from which we deduce that

Ft = M 0 v

Now the Kinetic Energy KE acquired by the mass will be equal to the work 
done by the force which is, of course, force × distance or Fs. Hence:

KE = Fs = F 2t 2

2M0
=

M 0
2v 2

2M0

KE = ½ M 0 v2

Now in order to carry out the same kind of analysis using Special Relativity, 
we need to use the results obtained during the analysis of the constantly 
accelerated rocket, namely:

s= c2

a cosh at
c
−1

and
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v = c tanh a
c

t

What we need to do is eliminate t from these two equations which can be done 
using the following standard relation:

i
cosh 2

 tanh 2 = 1

The algebra is a bit messy but it is not difficult and reduces to

as = c 2

1−v2/c2
− c 2 = c2−1 

Now we need to think carefully what we have found out. This equation gives 
us a relation between the speed reached and the distance travelled for a rocket 
undergoing a constant acceleration of a. But from whose point of view? The 
person on the rocket or the person who remains at rest?

Well, there is no problem about the speed v. As we have seen, both observers 
agree about the relative speed of any object. But in any case, it is the speed as seen 
by the stationary observer which we are talking about.

The distance s is the distance travelled as seen by the stationary observer as 
well (remember it is the actual distance travelled to the star, not the length 
contracted distance).

What about a the acceleration? This is the acceleration as experienced by the  
occupants of the rocket. You will remember that the rocket is supposed to 
accelerate in such a way that the occupants of the rocket experience a constant 
'artificial gravity'. As far as the astronauts are concerned, the rocket motors 
produce a constant thrust of F and the rocket has a constant mass of M0 so we can 
still assume that

a = F
M 0

hence

Fs = c2 −1

Normally we would just write

KE r = Fs

but this requires a bit of justification. You see, s is the distance travelled as 
seen by the stationary observer, while F is the thrust as measured by the astronauts 
and it is not immediately obvious that you can multiply these two quantities 
together.

Suppose that instead of accelerating a rocket with on board rocket motors, we 
consider accelerating an electron using a (stationary) electric field E.
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The question is; is the force as experienced by the electron the same as the 
force exerted on the electron by the accelerator? In a sense, there is no answer to 
this question because it all depends on what you mean by force. What we are 
effectively doing is constructing a relativistic definition of force which is as close 
to the Newtonian definition as possible. One of the things which we would like our 
relativistic force to do is to obey Newton's third law which can be stated as action 
and reaction are equal and opposite; so if we assume that this is true we can go 
ahead and complete the proof. ie:

KE r = M 0 c2−1
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Appendix G - The relation between energy 
and momentum

The total relativistic energy E and the relativistic momentum p of a body are 
given by the following expressions:

E =  M 0 c2 =
M 0c 2

1−v2 /c2

p = M 0 v =
M 0v

1−v2 /c2

We wish to eliminate v from these equations.

First square and multiply across:

E21−v2/c2 = M 0
2 c4

p21−v2/c2 = M 0
2 v2

Now for a diabolically cunning move, multiply the second equation by c2 and 
subtract!

E2− p2 c21−v2/c 2 = M 0
2 c41−v2/c2

from which we obtain:

E 2 − p2 c2 = M 0
2 c4

An alternative (and in my opinion better) way of writing this equation is:

E2 − E0
2 = p2 c2

where E0 is the rest-mass energy of the body.

It is instructive to compare this expression with the non-relativistic relation 
between energy and momentum which is calculated as follows

KE = ½Mv2 and p = Mv

so KE = p2

2M

It is not easy to see, at first, how the relativistic expression will reduce (as it 
must) to the non-relativistic one when v is small, but it does. Watch!
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Since

E2−E0
2 = p2 c2

we can write

E−E0EE0 = p2 c2

Now (E - E0) is just the relativistic kinetic energy KEr which, at low speeds 
approximates to the ordinary kinetic energy KE.

At low speeds, the total relativistic energy E and the rest-mass energy E0 are 
virtually equal and equal to Mc2 so:

KE .2 M c 2 = p2 c2

from which it is easy to see that

KE = p2

2M

as expected.
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Appendix H - The Gravitational Potential at  
the surface of a star

The force of gravity on a mass m 
at a distance r away from a star of 
mass M is equal to:

F = GMm
r2

The work done in pulling the 
mass from the surface of the star out 
to infinity is therefore:

W = ∫
R

∞ GMm
r 2 d r

This works out to be

W=GMm
r

and therefore the gravitational 
potential difference Df between the 
surface and ¥ is

 = W
m

= GM
R

Now by definition, the 
gravitational potential at ¥ is zero so 
the potential at the surface is 
negative, hence:

s = −GM
R
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