
Regular solids

Platonic solids

These are solids made of one kind of regular polygon only. There are 5 of them

Notation
 N = number of vertices on each face

P = number of faces meeting at each vertex
F = number of faces
V = number of vertices
E = Number of edges

Theorem 1.1

F=4 P /Z    where   Z=2 N −P N −2

Euler’s theorem FV = E2

also V = F×N / P

and E = F×N /2

so FF N /P−F N /2 = 2

hence F = 2 /1N /P – N /2 = 4P /2P2N – NP  = 4P /Z

and V = 4 N / Z

where Z = 2 P2 N – NP = 2 N – P N – 2

For example, a dodecahedron has N = 5 and P = 3 so Z = 6 + 10 – 15 = 1 ie: F = 4 * 3 / 1 = 12 faces

 

An alternative proof using vertex deficit

Internal angle of an N-sided polygon = −2/N

Vertex deficit  = 2−P −2/ N  = 2−P2 P / N  =  Z / N

where Z = 2 N – P N – 2

Now by the vertex deficit theorem (see Solid angles and Polyhedra)

Number of vertices V = 4/ = 4/ Z / N  = 4 N /Z

Since V = F×N / P

F = 4 P / Z

It is obvious that Z must be greater than zero and must not contain any prime factors (other than 2) 
which are incompatible with either N or P.

A graph of Z against N and P has the following form:



P = 6 8 4 0 -4 -8 -12
P = 5 7 4 1 -2 -5 -8
P = 4 6 4 2 0 -2 -4
P = 3 5 4 3 2 1 0
P = 2 4 4 4 4 4 4
P = 1 3 4 5 6 7 8

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

Obviously no solids exist with N < 3, P < 3 or Z < 0. These squares are shaded in grey. If Z = 0, the 
number of faces is infinite. This happens with N = 3 and P = 6 which is a plane tessellated with 
triangles. Similarly N = 4 and P = 4 produces a plane tessellated with squares and N = 6, P = 3 
tessellates the plane with hexagons. The only possibilities left all generate regular polyhedra as follows:

P = 5 F = 20
Icosahedron

Triball
P = 4 F = 8

Octahedron

Diamond
P = 3 F = 4

Tetrahedron

Pyramid

F = 6
Hexahedron

Cube

F = 12
Dodecahedron

Pentaball
N = 3 N = 4 N = 5

Complimentary solids
For any regular solid it is possible to construct a complimentary solid by replacing each vertex with a 
face and each face with a vertex. In the case of the Platonic solids the cube becomes the octahedron 
(and vice versa); the pentaball becomes the icosahedron (and vice versa) while the tetrahedron is its 
own complement.

Since F and V are interchanged, Euler's theorem tells us that complimentary solides will always have 
the same n umber of edges E.



Archimedean solids

It is possible to make an infinite number of prisms and drums but if we leave these out, we find that 
there are 10 solids which comprise 2 types of polygon, and 3 which contain three types.

Archimedean solids containing 2 types of polygon

Notation:
 NA = number of vertices on each face A

NB = number of vertices on each face B
PA = number of faces A meeting at each vertex
PB = number of faces B meeting at each vertex
FA = number of faces A
FB = number of faces B
V = number of vertices
E = Number of edges

Theorem 1.2

F A = 4P A N B /Z    :   F B = 4PB N A/Z
Z = 2 N A N B−P A N B  N A−2−PB N AN B−2

Euler’s theorem F AF BV−E = 2

also V = F A N AF B N B/P APB

and E = F A N AF B N B/2

so F AF BF A N AF B N B×1/P APB−1 /2 = 2

F AF B−P AP B−2F A N AF B N B / 2 P APB = 2

But V =  F A N A/ PA = F B N B/ PB

From which F A = 4 P A N B/ Z     and   F B = 4 PB N A/ Z

where Z = 2 P A N B2 PB N A – N A N B PAPB−2

= 2 N A N B − P A N B N A – 2 − PB N AN B – 2

For example, the solid which has two opposite squares joined by 8 triangles (ie a square drum) has

NA = 3, NB = 4 and PA = 3, PB = 1 so Z = 24 + 6 – 24 = 6 

ie: FA = 4*3*4/6 = 8  and  FB = 4*3*1/6 = 2

It is interesting to note that when  NA = 3, and PA = 3, PB = 1, Z is always equal to 6 regardless of NB and
therefore FB is always equal to 2. This represents an infinite series of solids consisting of two parallel 
polygons separated by a ring of triangles. These are called antiprisms (I prefer drums).

It is also interesting to note that when  NA = 4, and PA = 2, PB = 1, Z is always equal to 8 regardless of 
NB and  therefore FB is always equal to 2. This represents an infinite series of solids consisting of two 
parallel polygons separated by a ring of squares. These are called prisms



In general, for any given values of NA and NB, the value of Z will be positive only for small values of PA

and PB . If Z is negative, you are trying to fit too many polygons round each point. If Z = 0, the vertex 
is flat and the situation may result in a plane tessellation.

It is worth noting that the existence of a solution with integral values of Z, FA, FB and V does not 
necessarily imply that the solid actually exists.

● Consider those solids with triangles and squares ie NA = 3 and NB = 4

A graph of Z against PA and PB has the following form:

PA = 6 -4 -12 -18 -24
PA = 5 -2 -8 -14 -20
PA = 4 2 -4 -10 -16
PA = 3 6 0 -6 -12
PA = 2 10 4 -2 -8
PA = 1 14 8 2 -4

PB = 1 PB = 2 PB = 3 PB = 4

Obviously no solids exist with  Z < 0. These squares are shaded in grey. If Z = 0, the number of faces is
infinite. This happens with PA = 3 and PB = 2 which is a plane tessellated with 3 triangles and 2 squares 
round each vertex. (There are two ways of doing this actually.) Of the seven possibilities left only five 
generate integer values for FA and FB and hence produce solids as follows:



PA = 4 FA = 32, FB = 6
A3-3-3-3-4

Dilated Cube
PA = 3 FA = 8, FB = 2

D3.3.3.4
Square Drum

PA = 2 Does not exist FA = 8, FB = 6
A3.4.3.4

Chopped Diamond
PA = 1 Does not exist FA = 2, FB = 3

P3.4.4
Triangular Prism

FA = 8, FB = 18
A3.4.4.4

Exploded Cube
PB = 1 PB = 2 PB = 3

● Consider those solids with triangles and pentagons ie NA = 3 and NB = 5

A graph of Z against PA and PB has the following form:

PA = 6 -9 -18 -27 -36
PA = 5 -4 -13 -22 -31
PA = 4 1 -8 -17 -26
PA = 3 6 -3 -12 -21
PA = 2 11 2 -7 -16
PA = 1 16 7 -2 -11



PB = 1 PB = 2 PB = 3 PB = 4

Obviously no solids exist with  Z < 0. These squares are shaded in grey. 

PA = 4 FA = 40, FB = 12
A3.3.3.3.5

Dilated Pentaball
PA = 3 FA = 10, FB = 2

D3.3.3.5
Pentagonal Drum

PA = 2 Does not exist FA = 20, FB = 12
A3.5.3.5

Chopped Pentaball
PA = 1 Does not exist Does not exist

PB = 1 PB = 2

● Consider those solids with triangles and hexagons ie NA = 3 and NB = 6

A graph of Z against PA and PB has the following form:

PA = 5 -6 -18 -30
PA = 4 0 -12 -24
PA = 3 6 -6 -18
PA = 2 12 0 -12
PA = 1 18 6 -6

PB = 1 PB = 2 PB = 3

Obviously no solids exist with  Z < 0. These squares are shaded in grey. When Z = 0 the result is a 
tessellated plane.

When Z = 18, the number of faces is fractional so the solid does not exist. When Z = 12, the number of 
faces is integral but the solid is impossible to build without bending the hexagon!



That leaves just two possibilities.

PA = 3 FA = 12, FB = 2
D3.3.3.6

Hexagonal Drum
PA = 2 FA = 4, FB = 1

Impossible
PA = 1 Does not exist FA = 4, FB = 4

A3.6.6

Clipped Pyramid
PB = 1 PB = 2

● Consider those solids with triangles and heptagons ie NA = 3 and NB = 7

A graph of Z against PA and PB has the following form:

PA = 5 -8 -23 -48
PA = 4 -1 -16 -41
PA = 3 6 -9 -34
PA = 2 13 -2 -27
PA = 1 20 5 -20

PB = 1 PB = 2 PB = 3
The only one of these that works is PA = 3, PB =1 which is the heptagonal antiprism

Consider those solids with triangles and octagons ie NA = 3 and NB = 8

A graph of Z against PA and PB has the following form:

PA = 5 -10 -28 -46
PA = 4 -2 -20 -38
PA = 3 6 -12 -30
PA = 2 14 -4 -22
PA = 1 22 4 -14

PB = 1 PB = 2 PB = 3
Of the cases where Z is positive,  PA = 3, PB =1 is the octagonal antiprism.

The case  PA = 1, PB = 2  has vertex number A3.8.8 and has 8 triangles and 6 octagons and is a cube 
with its corners clipped off.



Clipped Cube

● Consider those solids with triangles and nonagons ie NA = 3 and NB = 9

A graph of Z against PA and PB has the following form:

PA = 5 -12 -33 -54
PA = 4 -3 -24 -45
PA = 3 6 -15 -36
PA = 2 15 -6 -27
PA = 1 24 3 -18

PB = 1 PB = 2 PB = 3
Of the cases where Z is positive,  PA = 3, PB =1 is the nonagonal antiprism.

The case  PA = 1, PB = 2  has an integral number of faces and vertices but is impossible to construct.

● Consider those solids with triangles and decagons ie NA = 3 and NB = 10

A graph of Z against PA and PB has the following form:

PA = 5 -14 -38 -62
PA = 4 -4 -28 -52
PA = 3 6 -18 -42
PA = 2 16 -8 -32
PA = 1 26 2 -22

PB = 1 PB = 2 PB = 3

Of the cases where Z is positive,  PA = 3, PB =1 is the decagonal antiprism.

The case  PA = 1, PB = 2 has vertex numbers 3.10.10. It  has 20 triangles and 12 decagons and is a 
dodecahedron with its corners clipped off.

Clipped Pentaball



● Consider those solids with triangles and larger polygons ie NA = 3 and NB >10

Only the antiprisms exist.

● Consider those solids with squares and pentagons ie NA = 4 and NB = 5

A graph of Z against PA and PB has the following form:

PA = 4 -12 -24 -36
PA = 3 -2 -14 -26
PA = 2 8 -4 -16
PA = 1 18 6 -6

PB = 1 PB = 2 PB = 3

There is only one possibility, the pentagonal prism.

● Consider those solids with squares and hexagons ie NA = 4 and NB = 6

A graph of Z against PA and PB has the following form:

PA = 4 -16 -32 -48
PA = 3 -4 -20 -36
PA = 2 8 -8 -24
PA = 1 20 4 -12

PB = 1 PB = 2 PB = 3

There are two possibilities, the hexagonal prism and (4.4.6) the clipped octahedron (4.6.6)

Clipped Diamond

● Consider those solids with squares and heptagons ie NA = 4 and NB = 7

There is only one possibility, the heptagonal prism.

● Consider those solids with squares and octagons ie NA = 4 and NB = 8

Again there is only one possibility, the octagonal prism

This is true for all combinations of squares and larger polygons

● Consider those solids with pentagons and hexagons ie NA = 5 and NB = 6

A graph of Z against PA and PB has the following form:

PA = 4 -32 -52 -72
PA = 3 -14 -34 -54
PA = 2 4 -16 -36
PA = 1 22 2 -18

PB = 1 PB = 2 PB = 3



There are two possibilities: 5.5.6 and 5.6.6. The first does not work. The second is the familiar 
Buckyball with 12 pentagons and 20 hexagons

Clipped Triball or Buckyball



Complementary solids of Archimedean solids (type 2)

In order to make a complimentary solid you must construct a plane at each vertex which is normal to 
the line joining the vertex to the centre of the original solid. Since every vertex of an Archimedean 
solid is identical, it follows that every face of its complement will also be identical. But is does not 
follow that these faces will be regular polygons. All we can deduce is that it will have the same number
of edges as the coordination number P of the original vertex.

It is easy to see too that each face of the original solid will become a vertex and that the coordination 
number of each new vertex will be equal to the number of edges on the original polygon. There will 
therefore be only one type of face but two types of vertex. We need, therefore to change some 
definitions.

Notation:
 NA = number of vertices of type A on each face

NB = number of vertices of type B on each face
PA = number of faces meeting at each vertex of type A
PB = number of faces meeting at each vertex of type B
VA = number of vertices of type A
VB = number of vertices of type B
F = number of faces
E = Number of edges

Theorem 1.3

V A = 4 PB N A/Z    :   V B = 4 PA N B /Z
Z = 2 P A PB−P A N B P B−2−PB N A P A−2

Euler’s theorem FV AV B−E = 2

also F = V A P AV B PB/ N AN B

and E = F N AN B/2 = V A P AV B PB/2

But F =  V A P A/ N A = V B PB / N B

from which V A = 4 PB N A/ Z V B = 4 P A N B/ Z

where Z = 2 P A PB − P A N B PB – 2 − PB N AP A – 2

In general, we know the total number of vertices and their types already. What we don't know is the 
number of each type of vertex (ie NA and NB) and the shape of the faces. It is therefore easier to use the 
simpler relations:

N A = N
V A PA

V A P AV B P B

N B = N
V B PB

V A PAV B P B

where  N = NA + NB

The simplest Archimedean solid is the square drum which, you will remember, has 2 squares and 8 
triangles – i.e. 10 faces and 8 vertices. Its complement will therefore have 10 vertices and 8 faces. In 
addition, we know that, since four faces surround each vertex in the drum, each face of the 
complimentary solid will have 4 vertices.



So we know that:

N = NA + NB = 4
PA = 3 (the 'triangle' vertices)
PB = 4 (the 'square' vertices)
VA = 8
VB = 2
F = 8

This gives  NA =  3  and NB = 1

What we are looking for is a solid with 8 faces, 4 joined at an apex at the top, 4 at the bottom with 8 
triple vertices round the waist. It is fairly clear that such a solid consisting of 8 quadrilaterals exists but 
our analysis does not tell us the precise shape of the faces, nor is it easy to see how they may be 
calculated. It is easy, however, to see that the faces must be deltoidal (kite-shaped).

In general, if you try sticking together 8 deltoids of arbitrary shape, it can be done but the deltoid will 
be bent in the middle. However, a deltoid has two degrees of freedom and if you fix one apex angle, 
there is always a second apex angle which will work.

The complements of the prisms turn out to be a series of bi-pyramids:

      

while the complements of the drums are deltohedra (ie solids whose faces are all deltoids.

The complements of the thirteen true Archimedean solids are called Catalan solids and can be seen on 
the following site:

http://dmccooey.com/polyhedra/index.html 

http://dmccooey.com/polyhedra/index.html


Archimedean solids containing 3 types of polygon

Theorem 1.3
By analogy with the preceding formula and using the fact that it must reduce to that formula when NB =
NC or PC = 0 we can suppose that

F A = 4 P A N B N C /Z F B = 4 PB N A N C /Z FC = 4 PC N A N B/Z
Z = 2 N A N B N C−PA N B N C N A−2−PB N A N C N B−2−PC N A N BN C−2

● Consider those solids with triangles, squares and pentagons ie NA = 3, NB = 4 and NC =5

The case 3.4.5.4 is consistent with the above formula and has 20  triangles, 30 squares, 12 pentagons 
and has 60 vertices. It is an enlarged dodecahedron with connecting rings of alternate triangles and 
squares.

Expanded Pentaball

● Consider those solids with  triangles, squares and hexagons ie NA = 3, NB = 4 and NC = 6

The cases 3.3.4.6 and 3.4.3.6 are consistent with the above formula and purport to have 16  triangles, 6 
squares, 4 hexagons and has 24 vertices but the latter case is impossible to construct and the former 
turns out to be a truncated octahedron with three of the hexagons replaced by triangles.

● Consider those solids with triangles, squares and heptagons ie NA = 3, NB = 4 and NC =7

No combinations are consistent with the above formula.

● Consider those solids with triangles, squares and larger polygons ie NA = 3, NB = 4 and NC > 7

The cases 3.3.4.8 and 3.4.3.8 are consistent with the above formula and purport to have 32 triangles, 12
squares and 6 octagons. The first case turns out to have flat hexagons (and is therefore the same as A4-
6-8) while the second is impossible. In fact it is easy to see that all cases of the form 3-3-4-N end up 
with flat hexagons, and cases of the form 3-4-3-N are impossible to build.

There is one other possibility: 3-4-12 but this only has 1 large polygon and is impossible to build.

● Consider those solids with squares, pentagons and another larger polygon ie NA = 4, NB = 5 
and NC > 5



No combinations are consistent with the above formula except for NC = 10 which has 10 squares, 8 
pentagons and 4 decagons. This solid is not possible because it is not possible for squares and decagons
to alternate round a pentagon.

● Consider those solids with squares, hexagons and another larger polygon ie NA = 4, NB = 6 and 
NC > 5

4.6.7 is not consistent.

4.6.8 is possible and has 12 squares, 8 hexagons, 6 octagons and 48 vertices. It is a kind of Expanded 
truncated cube with bands of alternate squares and hexagons separating the octagonal sides. 

Exploded Cube

4.6.9 is consistent with the formula but it is clear that it is impossible to build because the squares and 
hexagons must alternate round the large polygon which must therefore have an even number of sides.

4.6.10 has 30 squares, 20 hexagons, 12 decagons and 120 vertices. It is an Expanded version of a 
truncated dodecahedron consisting of bands of squares and hexagons separating 12 dodecahedra.

Exploded Pentaball

● Consider those solids with squares and two larger polygons ie NA = 4, NB >6 and NC > 7

It is easy to see that all the polygons must have an even number of sides. The smallest possibility is 
4.8.10 which will not fit round a vertex

● Consider those solids with even larger polygons ie NA >4, NB >6 and NC > 7

It is easy to see that all the polygons must have an even number of sides. The smallest possibility is 
6.8.10 which will not fit round a vertex. There are no other possibilities with three polygons

N-polygon solids (N > 3)

The smallest case (3.4.5.6) will not fit round a vertex. There are therefore no more Archimedean solids.



Summary

Configur.
ation

Type FA FB FC V Proper name My name

3.3.3.4 Drum 8T 2S 8 Square Antiprism Square Drum

3.3.3.3.4 Arch 32T 6S 24 Snub Cube Dilated Cube

3.4.4 Prism 2T 3S 6 Triangular Prism Triangular prism

3.4.3.4 Arch 8T 6S 12 Cuboctahedron Chopped cube

3.4.4.4 Arch 8T 18S 24 Small Rhombicuboctahedron Expanded Cube

3.3.3.5 Drum 10T 2P 10 Pentagonal Antiprism Pentagonal Drum

3.3.3.3.5 Arch 80T 12P 60 Snub Dodecahedron Dilated Pentaball

3.5.3.5 Arch 20T 12P 30 Icosidodecahedron Chopped Pentaball

3.3.3.6 Drum 12T 2X 12 Hexagonal Antiprism Hexagonal drum

3.6.6 Arch 4T 4X 12 Truncated Tetrahedron Clipped Pyramid

3.3.3.7 Drum 14T 2H 14 Heptagonal Antiprism Heptagonal drum

3.8.8 Arch 8T 6O 24 Truncated Cube Clipped cube

3.10.10 Arch 20T 12D 60 Truncated Dodecahedron Clipped Pentaball

4.4.5 Prism 5S 2P 10 Pentagonal Prism Pentagonal Prism

4.4.6 Prism 6S 2X 12 Hexagonal Prism Hexagonal Prism

4.6.6 Arch 6S 8X 24 Truncated Octahedron Clipped Diamond

4.4.7 Prism 7S 2H 14 Heptagonal Prism Heptagonal Prism

5.6.6 Arch 12P 20X 60 Truncated Icosahedron Clipped Triball or 
Buckyball

4.6.8 Arch 12S 8X 6O 48 Large  
Rhombicuboctahedron

Exploded Cube

3.4.5.4 Arch 20T 30S 12P 60 Small  
Rhombicosidodecahedron

Expanded Pentaball

4.6.10 Arch 30S 20H 12D 120 Large 
Rhombicosidodecahedron

Exploded Pentaball



Note on my terminology

Clipped
This is synonymous with 'truncated' and means that all the vertices have been clipped off leaving all 
edges equal to approximately one third of the original length. It has the effect of increasing the number 
of faces by the number of original vertices, and multiplying the number of vertices by the number of 
faces round a vertex..

F ' = FV
V ' = PV

N.N.N  P.2N.2N

The Clipped Pyramid

F ' = 44=8
V ' = 3×4=12
3.3.3  3.6 .6

The Clipped Cube 

F ' = 68=14
V ' = 3×8=24
4.4 .4  3.8.8

 

The Clipped Diamond:

F ' = 86=14
V ' = 4×6=24
3.3 .3.3  4.6 .6

The Clipped Pentaball

F ' = 1220=32
V ' = 3×20=60
5.5.5  3.10 .10

The Clipped Triball

F ' = 2012=32
V ' = 5×12=60

3.3 .3.3 .3  5.6 .6

This is the Buckyball.

It is interesting to note that the clipped versions of complementary solids are themselves 
complementary in a different way; having the same number of faces and vertices, but halving and 
doubling the number of sides on the two kinds of polygon.



Chopped
This is a bit more drastic than 'clipping'; all the corners are chopped off completely leaving nothing left
of the original edge. As with clipping, the number of faces increases by the number of original vertices 
but the number of vertices is increased by only half as much owing to the fact that every pair of new 
vertices are elided together.

F ' = FV
V ' = PV /2

N.N.N...  P.N.P.N
The Chopped Tetrahedron is an Octahedron

F ' = 44=8
V ' = 3×4 /2=6
3.3 .3  3.3 .3.3

The Chopped Cube:

F ' = 68=14
V ' = 3×8/2=12
4.4 .4  3.4 .3.4

The Chopped Octahedron is also a Chopped Cube.

F ' = 86=14
V ' = 4×6 /2=12
3.3 .3.3  4.3 .4 .3

This is a consequence of the Cube and the Octahedron being complementary

The Chopped Pentaball (Chopped Dodecahedron)

F ' = 1220=32
V ' = 3×20/ 2=30

5.5 .5  3.5 .3.5

The Chopped Icosahedron is also a Chopped Dodecahedron for the same reason

F ' = 2012=32
V ' = 5×12 /2=30

3.3 .3.3 .3  5.3 .5.3
.



Dilated
This involves taking the original solid apart and joining them back together with chains of triangles. 
Each vertex becomes a new face (with N = P) (shown yellow below) and each edge becomes two new 
triangles (shown blue).

F ' = FV2×E
V ' = N×F

N.N.N...  3.3 .P.3.N

The Dilated Tetrahedron is an Icosahedron.

F ' = 442×6 = 20
V ' = 3×4 = 12
3.3 .3  3.3 .3.3 .3

The Dilated Cube:    

F ' = 682×12 = 38
V ' = 4×6 = 24
4.4 .4  3.3 .3 .3.4

It is worth noting here that because of the 'skew' nature of this operation, the Dilated Cube has two 
chiral forms – ie a left and a right handed form.

The Dilated Octahedron is also a Dilated Cube. 

F ' = 862×12 = 38
V ' = 3×8 = 24

3.3 .3.3  3.3.4 .3 .3

The Dilated Pentaball  (Dilated Dodecahedron)

F ' = 12202×30 = 92
V ' = 5×12 = 60
5,5,5  3.3.3 .3 .5

The Dilated Icosahedron is also a Dilated Dodecahedron

F ' = 20122×30 = 92
V ' = 3×20 = 60

3.3.3 .3 .3  3.3 .5.3 .3

As before, complementary solids generate the same result when dilated.



Expanded
This is similar to dilation except that the edges are joined with a single square instead of two triangles.

F ' = FV E
V ' = N×F

N.N.N...  N.4.P.4

The Expanded Tetrahedron is a Chopped Cube.

F ' = 446 = 14
V ' = 3×4 = 12
3.3 .3  3.4 .3 .4

The Expanded Cube:

F ' = 6812 = 26
V ' = 4×6 = 24
4.4 .4  4.4.3 .4

The Expanded Octahedron is also an Expanded Cube.

F ' = 8612 = 26
V ' = 3×8 = 24
3.3.3 .3  3.4.4 .4

The Expanded Pentaball (Expanded Dodecahedron)

F ' = 122030 = 62
V ' = 5×12 = 60

5.5 .5  5.4 .3.4

The Expanded Icosahedron is also an Expanded Dodecahedron.

F ' = 201230 = 62
V ' = 3×20 = 60

3.3 .3 .3.3  3.4 .5.4



Exploded
This can be thought of as being a two stage process: first the solid is clipped creating new faces at the 
corners; then the solid is expanded using new squares to join the edges.

F ' = FV
V ' = PV

F ' '=F ' E = FV E
V ' ' = 2V ' = 2PV
N.N.N...  2N.4.2P

The Exploded Tetrahedron is a Clipped Octahedron

F ' ' = 446 = 14
V ' ' = 2×3×4 = 24

3.3 .3  6.4.6

The Exploded Cube:

F ' ' = 6812 = 26
V ' ' = 2×3×8 = 48

4.4 .4  8.4 .6

The Exploded Octahedron is (of course) the same as the Exploded Cube

F ' ' = 8612 = 26
V ' ' = 2×4×6 = 48

3.3 .3.3  6.4 .8

The Exploded Pentaball (Exploded Dodecahedron)

F ' ' = 122030 = 62
V ' ' = 2×3×20 = 120

5.5 .5  10.4 .6

The Exploded Icosahedron is (of course) the same as the Exploded Dodecahedron.

F ' ' = 201230 = 62
V ' ' = 2×5×12 = 120

3.3 .3 .3.3  6.4 .10



N-polygon Tilings

As has been noted above, a number of vertex configurations lead to plane tessellations namely 
(3.3.3.3.3.3), (3.3.3.4.4), (3.3.4.3.4), (3.3.3.3.6), (3.3.6.6), (3.6.3.6), (3.12.12), (3.4.3.6), (4.4.4.4), 
(4.8.8), (4.6.12). By successively reducing the number of sides of the largest polygon)s) you can often 
generate a series of semi-regular solids.

For example: starting with (6.6.6) we can of course generate the Pentaball (5.5.5), the Cube (4.4.4) and 
the Pyramid (3.3.3)

Alternatively, by reducing one polygon only we get first the Clipped Triball or Buckyball (5.6.6), the 
Clipped Diamond (4.6.6) and the Clipped Pyramid (3.6.6) whose general formula is (n.6.6). 

Starting with (3.12.12) you get the Clipped Pentaball (3.10.10), then the Clipped Cube (3.8.8), then the 
Clipped Pyramid (3.6.6). All these solids have the form (3.2n.2n).

The tiling (3.6.3.6) turns into the Chopped Pentaball (3.5.3.5) then the Chopped Cube (3.4.3.4). The 
general formula is (3.n.3.n).

To generate the Dilated solids we need to start with the tessellation (3.3.3.3.6). This reduces to the 
Dilated Pentaball (3.3.3.3.5), then the Dilated Cube (3.3.3.3.4). The general formula is (3.3.3.3.n)



The tessellation 4.4.4.4 generates just one semi-regular solid – the Expanded Cube (4.4.4.3). The 
general formula for this series is (4.4.4.n).

To generate the 3.polygon solids we need to start with a 3.polygon tessellation. Here is the (4.6.12) 
tessellation. It reduces first to the Exploded Pentaball (4.6.10), then the Exploded Cube (4.6.8) and 
finally the Clipped Diamond (4.6.6). The formula for this series is (4.6.2n).

The last series begins with (3.4.6.4) and reduces to the Expanded Pentaball (3.4.5.4) before 
transforming into the Expanded Cube (3.4.4.4) and the Chopped Cube (3.4.3.4). The general formula is
(3.4.n.4) 



The general case

The formulae derived above may be generalized to any solid which has any number of different regular
polygonal faces A, B, C.. [X]. and any number of different types of vertex 1, 2, 3... [k] as follows:

V 1 Z 1V 2 Z 2...V k Z k = 4 N A N B ... N X  

where Z k = 2 N A N B ... N X − P kA N B N C N A−2 − PkB N A N C N b−2 − ...

The fact that all values of Z must be greater than zero puts severe constraints on the possible values of 
N and P. 

Once the number of vertices has been decided upon, then number of faces can be worked out as 
follows:

F X = V 1 P1X  V 2 P2X  .../ N X

For example, let us try to find a solid made of triangles and squares (NA = 3, NB = 4) with two types of 
vertex V1 = (3.3.3) and V2 = (3.4.3.4). These parameters generate integral values of Z1  (=12) and Z2 
(=4) and three possible pairs of values of V1 and V2, namely 1 and 9, 2 and 6, or 3 and 3 respectively. 
Of these, only the middle one generates integral numbers of faces and represents a solid having 6 
triangles and 3 squares. This solid turns out to be a triangular prism whose ends have been capped with 
pyramids. I call these solids 'crystals' and this one is the triangular crystal. It is important to note that 
the existence of integral solutions to the above equations does not necessarily imply that the 
corresponding solid exists.

NA NB V1 V2 FA FB

3 - 3.3.3 3.3.3.3 6 - Triangular diamond

3 - 3.3.3.3.3 3.3.3.3 10 - Pentagonal diamond

3 4 3.3.3 3.3.4.4 6 3 Triangular crystal

3 4 3.3.3.3 3.3.4.4 8 4 Square crystal

3 4 3.3.3.3.3 3.3.4.4 10 5 Pentagonal crystal

3 4 3.3.3.4 3.3.4.4 8 3
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