Pythagorean Triplets

Euclid's formula for generating all the primitive pythagorean triplets (PPT's)

$$
a^{2}+b^{2}=c^{2}
$$

Since a, b and c have no common factors, either a or b or both must be odd.
Suppose that a and b are both odd (and c is even). We can therefore write:

$$
(2 p+1)^{2}+(2 q+1)^{2}=(2 r)^{2}
$$

Where p, q and r are integers.
In which case

$$
\begin{gathered}
4 p^{2}+4 p+1+4 q^{2}+4 q+1=4 r^{2} \\
2\left(p^{2}+p+q^{2}+q\right)=2 r^{2}-1
\end{gathered}
$$

Now the left hand side of this equation is even and the right hand side is odd. This is a contradiction so our assumption that a and b are both odd is wrong.

Let us suppose that a is odd and b is even. This means that c must be odd. It also implies that $c+a$ and $c-a$ must both be even. We can therefore write

$$
\begin{aligned}
& p=(c+a) / 2 \\
& q=(c-a) / 2
\end{aligned}
$$

Where p and q are integers.
In which case

$$
\begin{aligned}
& a=p-q \\
& c=p+q
\end{aligned}
$$

and

$$
b=\sqrt{4 p q}
$$

Now if p and q have a common factor, a, b and c will share the same factor and the triplet will not be primitive. p and q must therefore be co-prime.
If that is the case, then in order for $4 p q$ to have an integer square root, both p and q must be perfect squares. Suppose $p=m^{2}$ and $q=n^{2}$. Then

$$
\begin{gathered}
a=m^{2}-n^{2} \\
b=2 m n \\
c=m^{2}+n^{2}
\end{gathered}
$$

where m and n are co-prime, $m>n$ and one only is odd.
Here is a table of possible values of m and n.

m	n	a	b	c
2	1	3	4	5
3	2	5	12	13
4	1	15	8	17
4	3	7	24	25
5	2	21	20	29
5	4	9	40	41
6	1	35	12	37
6	3	27	36	45
6	5	11	60	61
7	2	45	28	53
7	4	33	56	65
7	6	13	84	85
8	1	63	16	65
8	3	55	48	73
8	5	39	80	89
8	7	15	112	113

(The entry for 63 has been greyed out because 6 and 3 are not co-prime.)

Another formula for generating all the primitive pythagorean triplets (PPT's)

Let us write $a=c-g$ and $b=c-h$ then

$$
\begin{gathered}
(c-g)^{2}+(c-h)^{2}=c^{2} \\
c^{2}-2 c g+g^{2}+c^{2}-2 c h+h^{2}=c^{2} \\
c^{2}-2(g+h) c+g^{2}+h^{2}=0
\end{gathered}
$$

from which we determine that

$$
\begin{gathered}
c=g+h+i \\
a=h+i \\
b=g+i \\
\text { where } \quad i=\sqrt{(2 g h)}
\end{gathered}
$$

[It is easy to show that $\mathrm{a}+b$ must be greater than c and therefore that the square root cannot be negative]

Suppose that g and h have a common factor p. Then i will also have the factor p. In fact, all three numbers a, b and c will have the same factor and the triplet will not be primitive. Hence g and h must be co-prime.

Since the expression must have an integral square root, then all the prime factors of g and h greater than 2 must appear in pairs and one of the two numbers must have an odd number of factors of 2 .

These conditions can be met in the following way. Take any two co-prime integers u and v with u being odd. Then $g=u^{2}, \quad h=2 v^{2}$ and $i=2 u v$

The following table gives the 16 possible values of u and v which generate triplets with $c<100$.

u	v	g	h	i	a	b	c
1	1	1	2	2	3	4	5
1	2	1	8	4	5	12	13
1	3	1	18	6	7	24	25
1	4	1	32	8	9	40	41
1	5	1	50	10	11	60	61
1	6	1	72	12	13	84	85
3	1	9	2	6	15	8	17
3	2	9	8	12	21	20	29
3	4	9	32	24	33	56	65
3	5	9	50	30	39	80	89
5	1	25	2	10	35	12	37
5	2	25	8	20	45	28	53
5	3	25	18	30	55	48	73
5	4	25	32	40	65	72	97
7	1	49	2	14	63	16	65
7	2	49	8	28	77	36	85

Methods for generating particular series of triplets

Suppose we wish to generate all PPT's in which $c=a+1$.

$$
\begin{gathered}
a^{2}+b^{2}=(a+1)^{2} \\
b^{2}=2 a+1
\end{gathered}
$$

This is easily achieved with

$$
\begin{aligned}
& a=\left(b^{2}-1\right) / 2 \\
& c=\left(b^{2}+1\right) / 2
\end{aligned}
$$

for all odd b.
Putting $b=2 p+1$ we get:

$$
\begin{gathered}
a=2 n^{2}+2 n \\
b=2 n+1 \\
c=2 n^{2}+2 n+1
\end{gathered}
$$

n	a	b	c
1	4	3	5
2	12	5	13
3	24	7	25
4	40	9	41
5	60	11	61
6	84	13	85
7	112	15	113
8	144	17	145

Suppose we wish to generate all PPT's in which $c=a+2$.

$$
\begin{gathered}
a^{2}+b^{2}=(a+2)^{2} \\
b^{2}=4 a+4
\end{gathered}
$$

This is easily achieved with

$$
\begin{aligned}
& a=\left(b^{2}-4\right) / 4 \\
& c=\left(b^{2}+4\right) / 4
\end{aligned}
$$

Since this restrict b to even numbers, a (and c) must be odd. b must therefore be even. Writing $b=$ $2 m$,

$$
\begin{gathered}
a=m^{2}-1 \\
b=2 m \\
c=m^{2}+1
\end{gathered}
$$

Since b is even, a must be odd which means that m must also be even. Writing $m=2 n$:

$$
\begin{gathered}
a=4 n^{2}-1 \\
b=4 n \\
c=4 n^{2}+1
\end{gathered}
$$

n	a	b	c
1	3	4	5
2	15	8	17
3	35	12	37
4	63	16	65
5	99	20	101
6	143	24	145
7	195	28	197
8	255	32	257

Suppose we wish to generate all PPT's in which $c=a+k$. (k is odd and $k>2$)

$$
\begin{gathered}
a^{2}+b^{2}=(a+k)^{2} \\
b^{2}=2 a k+k^{2}
\end{gathered}
$$

which gives

$$
\begin{aligned}
& a=\left(b^{2}-k^{2}\right) / 2 k \\
& c=\left(b^{2}+k^{2}\right) / 2 k
\end{aligned}
$$

Now if k contains a certain prime factor p, b must also be divisible by p. It follows that b^{2} will have two such prime factors and in consequence a and c will also have the same prime factor. If, on the other hand, k contains two prime factors and b one, they will cancel out. The argument can be extended to show that k can only contain an even number of individual prime factors - or, to put it another way, k must be a perfect square.
In which case b must be a multiple of \sqrt{k}
If we write $b=n \sqrt{k}$ then:

$$
\begin{aligned}
& a=\left(n^{2} k-k^{2}\right) / 2 k=\left(n^{2}-k\right) / 2 \\
& c=\left(n^{2} k+k^{2}\right) / 2 k=\left(n^{2}+k\right) / 2
\end{aligned}
$$

from which we see that n must be co-prime with k and n and k must have the same parity.
The following table shows some examples for $k=9$ (with certain values of n which are not coprime greyed out.)

k	n	a	b	c
9	5	8	15	17
	7	20	21	29
	9	36	27	45
	11	56	33	65
	13	80	39	89
	15	108	45	117
	17	140	51	149
	19	176	57	185

Suppose we wish to generate all PPT's in which $c=a+k \quad(k$ even and $k>2)$
Write $k=2 j$ so that:

$$
\begin{gathered}
a^{2}+b^{2}=(a+2 j)^{2} \\
b^{2}=4 a j+4 j^{2}
\end{gathered}
$$

which gives

$$
\begin{aligned}
& a=\left(b^{2}-4 j^{2}\right) / 4 j=b^{2} / 4 j-j \\
& c=\left(b^{2}+4 j^{2}\right) / 4 j=b^{2} / 4 j+j
\end{aligned}
$$

Now if j contains a certain prime factor p, b must also be divisible by p. It follows that b^{2} will have two such prime factors and in consequence a and c will also have the same prime factor. If, on the other hand, j contains two prime factors and b one, they will cancel out. The argument can be extended to show that j can only contain an even number of individual prime factors - or, to put it another way, j must be a perfect square.
In which case b must be a multiple of $2 \sqrt{j}$
If we write $b=2 n \sqrt{j}$ then:

$$
\begin{aligned}
& a=4 n^{2} j / 4 j-j=n^{2}-j \\
& c=4 n^{2} j / 4 j+j=n^{2}+j
\end{aligned}
$$

from which we see that n must be co-prime with j.
In addition, since b is always even, n must not have the same parity as j. This is evident from the following table for $k=18$

j	k	n	\mathbf{a}	\boldsymbol{b}	\boldsymbol{c}
\mathbf{j}	$\mathbf{1 8}$	4	7	24	25
		6	27	36	45
		8	55	48	73
		10	91	60	109
		12	135	72	153
		14	187	84	205
		16	247	96	265
		18	315	108	333

The values of k which are valid are therefore:

$$
1,2,8,9,18,25,49,50,72,81,98,121,128 \text { etc. }
$$

In the following table, Euclid's method has been used to generate a complete list of all the primitive pythagorean triplets together with their respective even and odd differences ($c-a$ and $c-b$ respectively).

m	n	a	b	c	k	k
2	1	3	4	5	2	1
3	2	5	12	13	8	1
4	1	15	8	17	2	9
4	3	7	24	25	18	1
5	2	21	20	29	8	9
5	4	9	40	41	32	1
6	1	35	12	37	2	25
6	5	11	60	61	50	1
7	2	45	28	53	8	25
7	4	33	56	65	32	9
7	6	13	84	85	72	1
8	1	63	16	65	2	49
8	3	55	48	73	18	25
8	5	39	80	89	50	9
8	7	15	112	113	98	1
9	2	77	36	85	8	49
9	4	65	72	97	32	25
9	8	17	144	145	128	1
10	1	99	20	101	2	81
10	3	91	60	109	18	49
10	7	51	140	149	98	9
10	9	19	180	181	162	1
11	2	117	44	125	8	81
11	4	105	88	137	32	49
11	6	85	132	157	72	25
11	8	57	176	185	128	9
11	10	21	220	221	200	1
12	1	143	24	145	2	121
12	5	119	120	169	50	49
12	7	95	168	193	98	25
12	11	23	264	265	242	1
13	2	165	52	173	8	121
13	4	153	104	185	32	81
13	6	133	156	205	72	49
13	8	105	208	233	128	25
13	10	69	260	269	200	9
13	12	25	312	313	288	1
14	1	195	28	197	2	169
14	3	187	84	205	18	121
14	5	171	140	221	50	81
14	9	115	252	277	162	25
14	11	75	308	317	242	9
14	13	27	364	365	338	1

