Maxima and Minima in 2 Dimensions

Stationary Points in 1 dimension

In one dimension, in order to determine whether a stationary point is a maximum, a minimum or an inflexion all we have to do is calculate the second differential. If it is positive, we have a minimum, negative we have a maximum and zero for an inflexion. e.g. consider the equation

$$
\begin{equation*}
y=x^{3}-3 \mathrm{x} \tag{1}
\end{equation*}
$$

which looks like this:

Differentiating this we get

$$
\begin{equation*}
\frac{d y}{d x}=3 \mathrm{x}^{2}-3 \tag{2}
\end{equation*}
$$

which is zero at the points $x=1$ and $x=-1$.
Differentiating again:

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=6 \mathrm{x} \tag{3}
\end{equation*}
$$

which equals -6 at $x=-1$ (a maximum) and +6 at $x=1$ (a minimum)
So the rules which govern stationary points in 2 dimensions are simple: stationary points occur when the first differential is zero and the type of stationary point is determined by the value of the second differential: $-1=$ maximum, $0=$ inflexion, $+1=$ minimum

Stationary points in 2 dimensions

Stationary points are such that the gradient in both the X and Y directions is zero. i.e.:

$$
\begin{equation*}
\frac{\partial V}{\partial x}=0 \quad \text { and } \quad \frac{\partial V}{\partial y}=0 \tag{4}
\end{equation*}
$$

but how do we determine if such a point is a maximum, a minimum or something else like a saddle point? You can even have points which are part maximum and part inflexion.
First consider the equation:

$$
\begin{equation*}
V=x^{2}+y^{2} \tag{5}
\end{equation*}
$$

This is a bowl-shaped surface with a minimum at the origin. We have:

$$
\begin{equation*}
\frac{\partial V}{\partial x}=2 \mathrm{x} \quad \text { and } \quad \frac{\partial V}{\partial y}=2 \mathrm{y} \tag{6}
\end{equation*}
$$

both of which are zero at the origin.
Now there are 4 second order partial differentials: $\frac{\partial^{2} V}{\partial x^{2}} \quad \frac{\partial^{2} V}{\partial y^{2}} \quad \frac{\partial^{2} V}{\partial x \partial y}$ and $\frac{\partial^{2} V}{\partial y \partial x}$ (the last two being equal, of course).
These have the following values

$$
\begin{gather*}
\frac{\partial^{2} V}{\partial x^{2}}=2 \tag{7}\\
\frac{\partial^{2} V}{\partial y^{2}}=2 \tag{8}\\
\frac{\partial^{2} V}{\partial x \partial y}=\frac{\partial^{2} V}{\partial y \partial x}=0 \tag{9}
\end{gather*}
$$

The fact that both the first two are positive seems to indicate that the point must be a minimum but this is not always the case. Consider the equation:

$$
\begin{equation*}
V=x^{2}+y^{2}+2 x y \tag{10}
\end{equation*}
$$

As before, both of the first partial differentials are zero at the origin so it appears to have a minimum there but this is not the case. If you consider the points where $x=-y$, (ie along a diagonal line to the axes) you will appreciate that they are all zero. The point $(0,0)$ cannot therefore be a minimum. In fact the surface is not a bowl at all but a flat sheet curled into a parabola, touching the $z=0$ plane along the line $x+y=0$. At the origin, the surface is absolutely level and sections along the X and Y axes both show a minimum there but this is not a true minimum because for this to be the case, sections in all directions must show minima.
Indeed, if we consider the equation:

$$
\begin{equation*}
V=x^{2}+y^{2}+3 \mathrm{xy} \tag{11}
\end{equation*}
$$

then putting $x=-y$, we find that V is negative everywhere (except at the origin of course). This means that the origin is actually a saddle point
In general, if

$$
\begin{equation*}
V=x^{2}+y^{2}+a x y \tag{12}
\end{equation*}
$$

then

$$
\begin{gather*}
\partial^{2} V_{x x}=\frac{\partial^{2} V}{\partial x^{2}}=2 \tag{13}\\
\partial^{2} V_{y y}=\frac{\partial^{2} V}{\partial y^{2}}=2 \tag{14}\\
\partial^{2} V_{x y}=\frac{\partial^{2} V}{\partial x \partial y}=\frac{\partial^{2} V}{\partial y \partial x}=a^{2} \tag{15}
\end{gather*}
$$

In order to determine what kind of stationary point this is we must calculate the quantities:

$$
\begin{equation*}
T=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=\partial^{2} V_{x x}+\partial^{2} V_{y y} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
H=\frac{\partial^{2} V}{\partial x^{2}} \frac{\partial^{2} V}{\partial y^{2}}-\frac{\partial^{2} V}{\partial x \partial y} \frac{\partial^{2} V}{\partial y \partial x}=\partial^{2} V_{x x} \partial^{2} V_{y y}-\left(\partial^{2} V_{x y}\right)^{2} \tag{17}
\end{equation*}
$$

We now have multiple possibilities to consider:
If H is negative then the surface has negative curvature like a saddle regardless of the value of T.
If $H=0$ then the surface at the point in question is flat (in the sense that the surface of a cylinder is flat) and the direction of curvature is given by T (negative for a minimum and positive for a maximum as usual).

If H is positive, then the surface has positive curvature like the surface of a ball and whether it is a maximum or minimum is again determined by T.

Applying these rules to equation (12) we have $H=4-a^{2}$ and $T=4$ which tells us that, provided $a<$ 2 , we get a true minimum but if $a>2$ we get a saddle.
Lets try another equation:

$$
\begin{equation*}
V=x^{2}-y^{2} \tag{18}
\end{equation*}
$$

$T=0$ and $H=-4$ giving us a saddle at the origin.
What about:

$$
\begin{equation*}
V=x^{2}+y^{3} \tag{19}
\end{equation*}
$$

The cubic curve has an inflexion at the origin so what sort of surface are we going to find there? $\partial^{2} V_{x x}=2, \partial^{2} V_{y y}=0$ and $\partial^{2} V_{x y}=0$ so $H=0$ and $T=2$. This tells us that the surface is flat with an upward curl along the X axis. It will look a bit like a chair.

