
Lagrangians and Hamiltonians

The Principle of least action

There is an extremely deep principle called the principle of least action which governs all of 
physics. It is deeper than the conservation laws of energy and momentum because, together with 
some fundamental assumptions about the isotropy of space and time, these can be derived from it 
and basically what it says is that when a system evolves from a state A to a state B it does so in a 
way which minimises a certain quantity called action A. Now action is the integral with respect to 
time of a quantity which has the dimensions of energy which is called the Lagrangian L. so:

A =∫
t0

t1

Ldt (1)

and for a single particle moving about in a potential field in one dimension (eg a rollercoaster) the 
Lagrangian is equal to its kinetic energy minus its potential energy. i.e.:

L = KE − PE =
1
2
m ẋ2

− V (x ) (2)

N.B. The Lagrangian is a function of both x and ẋ  so we can differentiate it (partially) with respect
to either x or  ẋ  

∂L
∂ x

is a measure of the amount by which L changes along the roller coaster solely by virtue of 

changes in potential energy. Similarly 
∂L
∂ ẋ

is a measure of the way L changes because of changes

in speed, regardless of the height of the roller coaster.

The Euler-Lagrange Equation

Now Euler and Lagrange worked out that for action to be minimised the following relation must 
always hold:

d
dt (

∂ L
∂ ẋ ) =

∂ L
∂ x (3)

and by using this piece of mathematical magic, we can work out the equations of motion of a roller 
coaster. Watch.

From equation (2) we have:

∂L
∂ ẋ

= m ẋ

d
dt (

∂ L
∂ ẋ ) = m ẍ

and

∂L
∂ x

= −
d V ( x)
dx

so from equation (3) we get



m ẍ = −
d V ( x)
dx

which tells us that where the roller coaster comes across a steep ascent, the train will decelerate and 
on a descent it will accelerate in accordance with Newton's laws of motion!

Lets see if we can work out the equations of motion of a planet in orbit round a sun. The beauty of 
the Euler-Lagrange equation is that we are not restricted to Cartesian coordinates. We can use any 
coordinate system that we like and there is an Euler-Lagrange equation for each coordinate. 
Obviously we should use polar coordinates here. Watch:

First the kinetic energy:

KE = 1/2m((r θ̇)
2

+ ṙ2
)

Now the potential energy:

PE = −GMm /r

so

L = 1 /2m((r θ̇)
2

+ ṙ 2
) + GMm /r (4)

Now the two partial differentials in r:

∂L
∂ ṙ

= mṙ and 
∂L
∂ r

= mr θ̇2
− GMm /r 2

from which we get

r̈ = r θ̇2
− GM /r2 (5)

The first term is, of course, the centrifugal acceleration (it is centrifugal because in the absence of 
gravity r would increase) and the second term is the acceleration due to gravity.

We can also calculate the partial differentials in θ

∂L
∂θ̇

= mr 2
θ̇ and ∂L

∂θ
= 0

from which we get

d (mr 2
θ̇)

dt
= 0 (6)

2mr ṙ θ̇ + mr 2
θ̈ = 0

θ̈ = −
2 ṙ θ̇
r

(7)

This tells us that when the planet is travelling towards the sun (ie ṙ  is negative) the rotational 
speed will increase. In fact, as equation (6) shows, it is telling us that the angular momentum 
remains constant.

What about a simple pendulum?

This is easy. There is only one variable θ.

KE = 1/2m(l θ̇)2

PE = mgl (1 − cosθ)

L = 1/2m(l θ̇)
2

− mgl (1 − cosθ)

∂L
∂θ̇

= ml2 θ̇ and ∂L
∂θ

= −mgl sinθ



2ml l̇ θ̇ + ml 2 θ̈ = −mgl sin θ

2 l̇ θ̇ + l θ̈ = −g sinθ (8)

and that's it! That's the equation of motion for a simple pendulum – even one which rotates round 
and round. OK, solving this equation (ie finding an analytical solution) is extremely difficult and in 
many cases impossible but it is easy to solve numerically. But getting to equation (8) using 
Newton's laws is a lot more difficult.

What about a double pendulum? Lets restrict ourselves to the case where two masses each of mass 
1 unit are linked by rods of length 1 unit. We shall use two coordinates to define the system:  θ will 
be the angle the first rod makes with the vertical and α will be the angle between the first rod and 
the second. (The expressions for KE and PE are not difficult to prove but I have cheated and used 
Susskind's results!) 

KE = θ̇2 + (θ̇ + α̇)2/2 + θ̇(θ̇ + α̇)cosα

PE = −g (2 cosθ + cos(θ − α))

L = θ̇
2

+ (θ̇ + α̇)
2
/2 + θ̇(θ̇ + α̇)cos α + g (2cos θ + cos (θ − α))

∂L
∂θ̇

= 3 θ̇ + α̇ + (2 θ̇ + α̇)cosα  

∂L
∂θ

= −3 g sinθ

3 θ̈ + α̈ + (2 θ̇ + α)sinα α̇ + (2 θ̈ + α̈)cos α = −3 g sinθ (9)

∂L
∂α̇

= θ̇ + α̇ + θ̇cosα

∂L
∂α

= −θ̇( θ̇ + α̇)sinα + g sinα

θ̈ + α̈ − θ̇sinα α̇ + θ̈ cosα + θ̇(θ̇ + α̇)sin α = g sinα (10)

and from equations (9) and (10) you can work out expressions for α̈  and θ̈
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