Kappa functions

The exponential function

The series expansion of e^{x} is:

$$
\begin{equation*}
e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\frac{1}{5!} x^{5}+\ldots \tag{1}
\end{equation*}
$$

and it has the remarkable (and, apart from a constant of integration, unique) property that

$$
\begin{equation*}
\frac{d\left(e^{x}\right)}{d x}=e^{x} \tag{2}
\end{equation*}
$$

In other words, the exponential function is the only function which returns to itself when differentiated once. It is therefore the solution to the equation:

$$
\frac{d y}{d x}=y
$$

The hyperbolic functions

$\operatorname{Cosh}(x)$ and $\sinh (x)$ have the following expansions:

$$
\begin{aligned}
& \cosh (x)=1+\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}+\ldots \\
& \sinh (x)=x+\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}+\ldots
\end{aligned}
$$

from which it is easy to see that

$$
\begin{aligned}
& \frac{d(\cosh (x))}{d x}=\sinh (x) \\
& \frac{d(\sinh (x))}{d x}=\cosh (x)
\end{aligned}
$$

This means that the sinh and cosh functions return to themselves when differentiated twice and are the solutions to the equation:

$$
\frac{d^{2} y}{d x^{2}}=y
$$

It is also easy to see that:

$$
\cosh (x)+\sinh (x)=e^{x}
$$

and that

$$
\begin{aligned}
& \cosh (x)=\frac{e^{x}+e^{-x}}{2} \\
& \sinh (x)=\frac{e^{x}-e^{-x}}{2}
\end{aligned}
$$

The relationships can best be visualised on a graph:

Note how each graph is the gradient of the other and that, added together, they make e^{x}.
The question then suggests itself - what, in general, are the solutions to the equation

$$
\frac{d^{n} y}{d x^{n}}=y
$$

and what do they look like. Also - where do the trig functions sin and cos appear in this?

The trig functions

$\operatorname{Cos} x$ and $\sin x$ have the following expansions:

$$
\begin{aligned}
& \cos (x)=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\ldots \\
& \sin (x)=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\ldots
\end{aligned}
$$

The alternating minus signs add a new complication

$$
\begin{aligned}
& \frac{d(\cos (x))}{d x}=-\sin (x) \\
& \frac{d(\sin (x))}{d x}=-\cos (x)
\end{aligned}
$$

This means that the sin and cos functions return to the negative of themselves when differentiated twice and are the solutions to the equation:

$$
\frac{d^{2} y}{d x^{2}}=-y
$$

They are also solutions to the equation:

$$
\frac{d^{4} y}{d x^{4}}=y
$$

but they are not unique in this respect.

They can be written as:

$$
\begin{aligned}
& \cos (x)=\frac{e^{i x}+e^{-t x}}{2} \\
& \sin (x)=\frac{e^{i x}-e^{-i x}}{2 \mathrm{i}}
\end{aligned}
$$

The Kappa ${ }_{3}$ function

Consider the three functions:

$$
\begin{gathered}
k_{0}(x)=1+\frac{1}{3!} x^{3}+\frac{1}{6!} x^{6}+\frac{1}{9!} x^{9}+\ldots \\
k_{1}(x)=x+\frac{1}{4!} x^{4}+\frac{1}{7!} x^{7}+\frac{1}{10!} x^{10}+\ldots \\
k_{2}(x)=\frac{1}{2} x^{2}+\frac{1}{5!} x^{5}+\frac{1}{8!} x^{8}+\frac{1}{11!} x^{11}+\ldots
\end{gathered}
$$

It is easy to see that each function returns to itself after differentiation three times.
By analogy with the expressions for other functions, we can see that

$$
\begin{gathered}
k_{0}(x)=\frac{e^{x}+e^{\kappa_{3} x}+e^{\kappa_{3}^{2} x}}{3} \\
k_{1}(x)=\frac{e^{x}+\kappa_{3} e^{\kappa_{3} x}+\kappa_{2}^{2} e^{\kappa_{3}^{2} x}}{3} \\
k_{2}(x)=\frac{e^{x}+\kappa_{3}^{2} e^{\kappa_{3} x}+\kappa_{3}^{4} e^{\kappa_{3}^{2} x}}{3}
\end{gathered}
$$

where $\quad \kappa_{3}=\sqrt[3]{1}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$
(I have called functions like this 'kappa' functions because they all depend in a crucial way on the primary $\mathrm{n}^{\text {th }}$ root of 1 - which I like to call κ_{n})
After the next differentiation, the κ_{3}^{3} and κ_{3}^{6} coefficients disappear, returning us to $k_{0}(x)$ again.
Now

$$
e^{k_{3} x}=e^{(-1 / 2+\sqrt{3} / 2 i)} x=e^{-1 / 2 x} e^{\sqrt{3} / 2 i x}=e^{-1 / 2 x}(\cos (\alpha x)+i \sin (\alpha x))
$$

where $\alpha=\sqrt{3} / 2$
Since κ_{3}^{2} is the complex conjugate of κ_{3} the imaginary parts of the expression will cancel out and we can write:

$$
K_{3}(x)=\frac{e^{x}+e^{k_{3} x}+e^{k_{3}^{2} x}}{3}=\frac{e^{x}+2 e^{-1 / 2 x} \cos (\alpha x)}{3}
$$

It is of interest to check this expression by differentiating it three times. Ignoring the e^{x} term and the numerical constants, we get first:

$$
-1 / 2 e^{-1 / 2 x} \cos (\alpha x)-\alpha e^{-1 / 2 x} \sin (\alpha x)
$$

then:

$$
\begin{gathered}
1 / 4 e^{-1 / 2 x} \cos (\alpha x)+\alpha / 2 e^{-1 / 2 x} \sin (\alpha x)+\alpha / 2 e^{-1 / 2 x} \sin (\alpha x)-\alpha^{2} e^{-1 / 2 x} \cos (\alpha x) \\
\left(1 / 4-\alpha^{2}\right) e^{-1 / 2 x} \cos (\alpha x)+\alpha e^{-1 / 2 x} \sin (\alpha x)
\end{gathered}
$$

and finally:

$$
\begin{gathered}
\left(\alpha^{2}-1 / 4\right) / 2 e^{-1 / 2 x} \cos (\alpha x)-\alpha\left(1 / 4-\alpha^{2}\right) e^{-1 / 2 x} \sin (\alpha x)-\alpha / 2 e^{-1 / 2 x} \sin (\alpha x)+\alpha^{2} e^{-1 / 2 x} \cos (\alpha x) \\
\left(3 \alpha^{2}-1 / 4\right) / 2 e^{-1 / 2 x} \cos (\alpha x)-\alpha\left(3 / 4-\alpha^{2}\right) e^{-1 / 2 x} \sin (\alpha x)
\end{gathered}
$$

which - amazingly - boils down to:

$$
e^{-1 / 2 x} \cos (\alpha x)
$$

Now - what does this new curve look like?

The blue line is the Kappa_{3} function and the red line is its first derivative. When x is positive, the functions look very much like the hyperbolic trig functions but for x negative, they oscillate with ever increasing amplitude.
Since this curve is one of the solutions to the equation

$$
\frac{d^{3} y}{d x^{3}}=y
$$

it traces the path of a particle whose rate of change of acceleration is equal to its displacement. I doubt if it has must application but you never know!

The Kappa ${ }_{4}$ function

The general solution to the equation $\frac{d^{4} y}{d x^{4}}=y$ has the form:

$$
f(x)=A e^{x}+B e^{i x}+C e^{i^{2} x}+D e^{i^{3} x}
$$

and it is easy to see that both the hyperbolic and the standard trig functions are included. I shall define the Kappa ${ }_{4}$ function as follows:

$$
K_{4}(x)=\frac{e^{x}+e^{i x}+e^{i^{2} x}+e^{i^{3} x}}{4}
$$

(where $\kappa_{4}=i$) and its expansion is:

$$
K_{4}(x)=1+\frac{1}{4!} x^{4}+\frac{1}{8!} x^{8}+\frac{1}{12!} x^{12}+\ldots
$$

It can also be expressed in the following way:

$$
K_{4}(x)=\frac{\cosh (x)+\cos (x)}{2}
$$

and it looks like this:

Because it is an even function, it is a lot less interesting than the Kappa ${ }_{3}$ function.
Is is evident that there is a whole series of Kappa functions. For example: Kappa ${ }_{8}$ can be expressed as

$$
K_{8}(x)=\frac{\cosh (x)+\cos (x)+2 \cosh (x / \sqrt{2}) \cos (x / \sqrt{2})}{4}
$$

and looks similar to K_{4} but with an even longer flat section.
I expect that the odd Kappa functions are quite complicated to express in terms of the standard functions but that they all behave in a similar way to K_{3}.

