Fibonacci numbers

A general Fibonacci series is characterised by the fact that $F_{n}=F_{n-1}+F_{n-2}$.
Consider the series $1, a, a^{2}, a^{3}, a^{4} \ldots$ This will be a Fibonacci series if, and only if $a^{2}=a+1$. The solution to this quadratic equation is $a=(1+\sqrt{ } 5) / 2$ which is the golden ratio $1.618033 \ldots$
This number has some remarkable properties; in particular, all powers of a can be simplified as follows:

$$
\begin{array}{ll}
a^{2}= & a+1 \\
a^{3}= & a^{2}+a=2 a+1 \\
a^{4}= & a^{3}+a^{2}=3 a+2 \\
a^{5}= & a^{4}+a^{3}=5 a+3 \\
a^{6}= & a^{5}+a^{4}=8 a+5 \\
& \text { etc. }
\end{array}
$$

It is interesting to see the the natural Fibonacci numbers appearing in this list
It is possible to extend this list backwards to include negative indices as follows:

$$
\begin{array}{llr}
a^{-6}= & a^{-4}-a^{-5}= & -8 a+13 \\
a^{-5}= & a^{-3}-a^{-4}= & 5 a-8 \\
a^{-4}= & a^{-2}-a^{-3}= & -3 a+5 \\
a^{-3}= & a^{-1}-a^{-2}= & 2 a-3 \\
a^{-2}= & a^{0}-a^{-1}= & -1 a+2 \\
a^{-1}= & a^{1}-a^{0}= & 1 a-1 \\
a^{0}= & & 0 \mathrm{a}+1 \\
a^{1}= & & 1 \\
a^{2}= & & 1 a+0 \\
a^{3}= & a^{2}+a= & 1 a+1 \\
a^{4}= & a^{3}+a^{2}= & 3 a+1 \\
a^{5}= & a^{4}+a^{3}= & 5 a+3 \\
a^{6}= & a^{5}+a^{4}= & 8 a+5
\end{array}
$$

etc.
The natural Fibonacci numbers are as follows:

$$
\begin{aligned}
& \boldsymbol{F}_{0}=0 \\
& \boldsymbol{F}_{1}=1 \\
& \boldsymbol{F}_{2}=1 \\
& \boldsymbol{F}_{3}=2 \\
& \boldsymbol{F}_{4}=3 \\
& \boldsymbol{F}_{5}=5 \\
& \boldsymbol{F}_{5}=8 \\
& \boldsymbol{F}_{6}=8
\end{aligned}
$$

etc.
It would be nice if we had a formula for the nth Fibonacci number. By inspecting the above list of powers of the golden ratio, we can see that $a^{n}=\boldsymbol{F}_{n} a+\boldsymbol{F}_{n-I}$. This gives us a formula for \boldsymbol{F}_{n} in terms of \boldsymbol{F}_{n-1}, namely:

$$
\begin{array}{ll}
& \boldsymbol{F}_{n}=\left(a^{n}-\boldsymbol{F}_{n-1}\right) / a \\
\text { or } & \boldsymbol{F}_{n}=a^{n-1}-\boldsymbol{F}_{n-1} / a
\end{array}
$$

Let us write down a list of the Fibonacci numbers in terms of a each time using the above formula to generate the next number:

$$
\begin{aligned}
& \boldsymbol{F}_{0}=0 \text { (our starting point) } \\
& \boldsymbol{F}_{1}=a^{0}-0 \\
& \boldsymbol{F}_{2}=a-1 / a=a^{l}-a^{-1}(=1) \\
& \boldsymbol{F}_{3}=a^{2}-\left(a^{I}-a^{-1}\right) / a=a^{2}-a^{0}+a^{-2}(=2) \\
& \boldsymbol{F}_{4}=a^{3}-\left(a^{2}-a^{0}+a^{-2}\right) / a=a^{3}-a^{l}+a^{-1}-a^{-3}(=3) \\
& \boldsymbol{F}_{5}=a^{4}-\left(a^{3}-a^{I}+a^{-1}-a^{-3}\right) / a=a^{4}-a^{2}+a^{0}-a^{-2}+a^{-4}(=5)
\end{aligned}
$$

etc.
from which it is easy to see that

$$
\boldsymbol{F}_{n}=a^{n-1}-a^{n-3}+a^{n-5}-\ldots \pm a^{-(n-5)} \pm a^{-(n-3)} \pm a^{-(n-1)}
$$

While it is true that this is a perfectly good formula for \boldsymbol{F}_{n} in terms of n alone, it has to be said that if you want to calculate \boldsymbol{F}_{100} say, you are better off calculating the other 99 numbers first than using this formula!

There is a better way to proceed. If n is even we have

$$
a^{n}=\boldsymbol{F}_{n} a+\boldsymbol{F}_{n-1}
$$

and

$$
a^{-n}=-\boldsymbol{F n} a+\boldsymbol{F}_{n+1}
$$

If we add these together we get the sum of \boldsymbol{F}_{n+1} and \boldsymbol{F}_{n-1} which isn't a lot of use; but if we subtract them we get

$$
a^{n}-a^{-n}=\boldsymbol{F}_{n} a+\boldsymbol{F}_{n-1}+\boldsymbol{F}_{n} a-\boldsymbol{F}_{n+1}=2 \boldsymbol{F}_{n} a-\left(\boldsymbol{F}_{n+1}-\boldsymbol{F}_{n-1}\right)
$$

But $\boldsymbol{F}_{n+1}-\boldsymbol{F}_{n-1}=\boldsymbol{F}_{n}$ so

$$
a^{n}-a^{-n}=\boldsymbol{F}_{n}(2 a-1)=\sqrt{ } 5 \boldsymbol{F}_{n}
$$

Hence

$$
\boldsymbol{F}_{n}=\frac{a^{n}-a^{-n}}{\sqrt{5}}
$$

If n is odd, the minus sign should be replaced by a plus sign so the general formula can be written

$$
\boldsymbol{F}_{n}=\frac{a^{n}-(-a)^{-n}}{\sqrt{5}}
$$

This is known as Binet's formula.

Now for \boldsymbol{F}_{100} !

$$
\boldsymbol{F}_{100}=\frac{a^{100}-a^{-(100)}}{\sqrt{5}}=3.54 \times 10^{20}
$$

It is a remarkable fact that a formula which is riddled with irrational numbers like a and $\sqrt{5}$ can generate an integer for all values of n.

We can also ask what values it generates for fractional values of n. Since it involves the exponent of a negative number, the result will be a complex number $\boldsymbol{F}_{\text {real }}+\mathrm{i} \boldsymbol{F}_{\text {inaginary }}$.

$$
\boldsymbol{F}_{n}=\frac{a^{n}-(-1)^{-n} a^{-n}}{\sqrt{5}}
$$

Now

$$
(-1)^{-n}=\cos \pi n-i \sin \pi n
$$

so we can write

$$
\boldsymbol{F}_{n}=\frac{a^{n}-(\cos \pi n-i \sin \pi n) a^{-n}}{\sqrt{5}}
$$

hence

$$
\boldsymbol{F}_{\text {real }}=\frac{a^{n}-(\cos \pi n) a^{-n}}{\sqrt{5}} \text { and } \boldsymbol{F}_{\text {imaginary }}=\frac{(\sin \pi n) a^{-n}}{\sqrt{5}}
$$

A plot of this function is shown below:

It plots n from -4 to +4 . It crosses the real axis at every integer value of n, the crossing points being

$$
-3,2-1,1,0,1,1,2,3, \ldots
$$

which is, amazingly the Fibonacci series!

