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Recursion
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Many fractals  have  a  recursive  structure.  What  this  means is  that
each part is defined in terms of the whole. This is in contrast to most
structures  in  which  the  whole  is  defined  in  terms  of  its  parts.  For
example,  a  car  is  made  up  of  several  distinct  parts  –  an  engine,  a
chassis, a transmission system etc. etc.; and each part is defined in terms
of smaller and smaller unique parts and so on.

A tree does not have to be defined like this. To a large extent you can
define a tree as a system of branches, each of which is a smaller tree. All
you have to  do is  define exactly what  a  'branch'  is.  This will  do:  a
'branch' is a length of wood which starts at a 'fork' and ends at a second
'fork'  from  which  two  smaller  'branches'  sprout  at  certain  angles.
Finally we have to define the first 'branch' like this: the first  branch
starts on the ground and is vertical.

The precise shape of the resulting tree is determined by the following
parameters: a) the factors  R1 and  R2 by which each branch is smaller
than  the  branch  from which  it  sprouts  and  c)  the  angles  A1 and  A2

between the old branch and the new.

The first three stages in the growth of a fractal tree using the same
ratios and angles for the two branches
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A Fractal tree with a recursion depth of 10 and a small amount of randomness thrown in

A Fractal tree with a recursion depth of 8 and a larger amount of randomness thrown in.

3



Fractal Tree Program
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

DIM: depth AS INTEGER = 4 recursion depth
DIM: R1 , R2 AS FLOAT = { … } ratios of each branch
DIM: A1 , A2 AS FLOAT = { … } angles of each branch

CALL: Branch(depth, 0, 0, 100, 90) call subroutine with initial stem

DEFINE: Branch(d, x, y, length, angle)
IF d = 0 THEN EXIT exit subroutine when depth = zero
CALL: DrawBranch(x, y, length, angle) draw current branch
x = x + length * COS(angle) update x and y coordinates
y = y + length * SIN(angle)

call subroutine for each branch at the fork
using depth – 1, new length and angle

CALL: Branch(d – 1, x, y, length * R1, angle + A1)
CALL: Branch(d – 1, x, y, length * R2, angle + A2)

END_DEFINITION

DEFINE: DrawBranch(x, y, length, angle) Draws a suitable branch
...

END_DEFINITION

Above is a fragment of pseudocode which will generate fractal trees
like those opposite. You will notice that the subroutine 'Branch' is called
from within the same subroutine. This technique is known as recursion.
In order for it to work you must make sure of two things. Firstly, there
must be a counter which takes note of the depth which has been reached
and when this counter reaches zero, the subroutine must exit without
calling  itself  again.  Second,  the  parameters  must  be  called  by value
rather than by reference. For example the routine must pass only the
values of the x and y parameters, not the parameters themselves. This is
so that when the subroutine eventually returns, x and y will still have the
values which they had when the subroutine was called. (Many computer
languages will assume this by default but not all do.)
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The Droste Effect
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

The image opposite appeared in 1904. It shows a Dutch lady holding
a packet of Droste's cacao on which is printed an image of a Dutch lady
holding a packet of Droste's cacao on which …

This  infinite  regress  will  also  be  familiar  with  those  who  have
experimented with those old-fashioned ladies dressing tables with two
side mirrors which could be positioned approximately parallel with each
other.

Yet another method is to point a video camera at its own TV monitor.
The  time  delay  introduced  by  the  electronic  circuitry  can  generate
fascinating swirling patterns which can persist for several seconds.

A modification of the preceding code can produce images like the
one below where a routine to draw a simple picture frame includes a
reference to itself, slightly smaller and slightly rotated
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The Koch Snowflake
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

In truth,  neither  trees  nor  Droste  images  are  true fractals  because
their recursion depth is necessarily limited. A true fractal has infinite
detail because it has infinite depth. One of the first true fractals to be
studied appeared in a paper by the Swedish mathematician Helge von
Koch in  1904.  It  is  easy to  see  how it  is  constructed:  Draw a  line;
construct a 'tent' on the middle third; do the same with all four lines; do
the same over and over again...

Every time you do this operation you increase the length of the line
by one third. It follows that after an infinite number of operations the
line will  be infinitely long. It  will,  however easily fit  onto the same
piece of paper as the original tent. Three of these lines make a kind of
'snowflake'  whose  perimeter  length  is  infinite  but  which  encloses  a
finite area.

Here is the pseudo-code for the snowflake:

DIM: depth AS INTEGER = 4 recursion depth

CALL: Koch(depth,  0, 0, 100, 0) call subroutine with first line
CALL: Koch(depth, 100, 0, 100, -120) call subroutine with second line
CALL: Koch(depth,  50, 86.7, 100, 120) call subroutine with third line

DEFINE: Koch(d, x, y, length, angle)
IF d = 0 THEN when depth = zero

CALL: DrawLine(x, y, length, angle) draw a line
EXIT and exit subroutine
length = length/3 divide length by 3
CALL: Koch(d – 1, x, y, length1, angle) call Koch for first segment
x += length*COS(angle): y += length*SIN(angle) update coords
CALL: Koch(d – 1, x, y, length, angle + 60) call Koch for second segment
x += length*COS(angle + 60): y += length*SIN(angle + 60) update coords
CALL: Koch(d – 1, x, y, length, angle – 60) call Koch for third segment
x += length*COS(angle - 60): y += length*SIN(angle – 60) update coords
CALL: Koch(d – 1, x, y, length, angle ) call Koch for last segment

END_DEFINITION

DEFINE: DrawLine(x, y, length, angle) Draws a suitable line
...

END_DEFINITION
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The Koch Snowflake
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The Koch snowflake will tile the plane using successively smaller
and smaller versions.

Illustration: Wikimedia commons

There are a number of variations on this theme. This one is called the
'Gosper Flowsnake' curve.

The  following  illustration  shows  how it  will  tile  the  plane.  Each
successive iteration is made of smaller and smaller hexagons.
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Illustration: Wikimedia commons

This one is called the quadratic Koch island curve. Remarkably, itt
too tiles the plane.
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The Sierpinsky Carpet
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

This fractal was first described by Wacław Sierpiński in 1916. The
square carpet is  divided into 9 sub-squares and at  each iteration,  the
centre square is removed.

The area which is left after each operation is easily seen to follow the
series: 8/9, (8/9)2, (8/9)3, …, (8/9)n. Now this series tends to zero as  n
tends to infinity and so the area of the fractal carpet is actually zero. But
this does not mean that there is nothing left! This depends on precisely
how the squares are removed.

Consider a simpler procedure: Consider the line from 0 to 1. Label
all the points on the line in ternary notation1. We can now easily divide
our number line into three as follows:

   0.0     [ 0.0... ]        0.1      [ 0.1... ]      0.2      [ 0.2... ]      1.0
    ■▬▬▬▬▬▬▬■▬▬▬▬▬▬▬■▬▬▬▬▬▬▬■

Now when we remove the middle third, it is important to say whether
or not we wish to remove the end points i.e. the points labelled 0.1 and
0.2.  We shall  choose  not  to  remove  these.  In  other  words  we  shall
choose to remove all those points whose ternary label begins 0.1... with
the exception of 0.1 itself.

Now we shall remove the middle third of the two remaining sections.
Can you see that this will entail removing all the points beginning with
0.01... and 0.21... with the exception of 0.01 and 0.21? In the end we
shall remove all points with a 1 in the ternary expansion except those
that  just  terminate  with  a  1.  What  this  means  is  that  numbers  like
0.20122 and 0.002121 are removed but 0.20202... and 0.00221 survive.

In  the  case  of  the  Sierpinsky carpet,  any point  with  at  least  one
surviving coordinate survives so although the carpet is full of holes and
has lost all its pile, much of the warp and weft remains intact!

1 Ternary uses the digits 0, 1 and 2. For example, the number 102 in ternary notation 
equals eleven because 1 × 9 + 0 × 3 +2 × 1 = 11. Similarly the number 0.102 equals  
0.407407... because 1 × 1/3 + 0 × 1/9 +2 × 1/27 = 11/27
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Other Sierpinsky Fractals
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

It should be fairly obvious how the fractals illustrated opposite are
constructed. The upper one is called the Vicsek carpet and is generated
in a similar way to the Sierpinsky carpet but this time the four corner
squares are removed.

The Sierpinsky triangle replaces each triangle with a stack of three
smaller triangles.

The  Sierpinsky  hexagon  replaces  each  hexagon  with  six  smaller
hexagons. Notice that the holes inside the fractal are Koch snowflakes!

The pseudocode below can easily be adapted to draw any of these
fractals with a suitable routine for drawing a shape. You might like to
experiment with pentagons or even circles.

DIM: depth AS INTEGER = 4 recursion depth
DIM: reductionfactor as float = *** factor by which size is reduced

CALL: Carpet(depth,  0, 0, 100) call subroutine with first shape

DEFINE: Carpet(d, x, y, size)
IF d = 0 THEN when depth = zero

CALL: DrawShape(x, y,  size) draw a shape
EXIT and exit subroutine
size = size/reductionfactor divide length
LOOP repeat the loop as required

x  = ***: y = *** update x and y
CALL: Carpet(d – 1,x, y, size)

ENDLOOP
END_DEFINITION

DEFINE: DrawShape(x, y, size) Draws a suitable shape
...

END_DEFINITION
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Lindenmayer Fractals
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

The fractals we have drawn so far have been fairly straightforward
and of limited interest but in each case we have seen how the fractal is
defined by a simple rule – 'draw a tent on the middle third', 'remove the
corner squares' etc. etc. Lindenmayer fractals are generated by codifying
these rules into a formula which defines the behaviour of a 'turtle' which
draws out the fractal. To illustrate how the system works, consider how
the Koch curve can be defined

Define  STEP as:  STEP;  TURN LEFT 60°;  STEP,  TURN RIGHT
120°; STEP; TURN LEFT 60°; STEP

Notice how the definition is recursive (because it includes a reference
to itself)). In addition it is necessary to specify how to start the process
which in this case is simply to make a single STEP. In practice it is
usual to specify a single angle and to give each formula an upper case
letter so the above rule can be reduced to:

Koch curve: angle = 60°; A  =  A + A – – A + A; start  =  A
where + means turn left and – means turn right.

In the following pseudocode, whenever an “A” is encountered, the
subroutine is called again with the whole formula.

DIM: depth AS INTEGER = 4 recursion depth
DIM: formula AS STRING = *** Lindenmayer formula

CALL: Lindenmayer(depth,  0, 0, 100, 0, formula) call subroutine

DEFINE: Lindenmayer(d, x, y, length, angle, formula)
IF d = 0 THEN when depth = zero

CALL: DrawLine(x, y,  length, angle) draw a line
x += length*COS(angle): y += length*SIN(angle) update

EXIT and exit subroutine
length = length/3 divide length by 3
FOR EACH char IN formula

IF char=”A” THEN Lindenmayer(d-1, x, y, length, angle, formula)
IF char=”+” THEN angle += 60
IF char = “-” THEN angle -= 60

END FOR
END_DEFINITION
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The Koch curve has a palindromic formula – i.e. it reads exactly 
the same backwards. Another Palindromic formula generates the Lévy 
C-curve shown below, as does the hexagonal C-curve.

            

        

        

    
The Lévy C-curve

45°: A = + A – – A +: A     
The hexagonal C-curve

60°: A = + A – A – A + : A
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One problem with palindromic formulae is that they may not have
the  same number  of  +'s  as  -'s.  One  consequence  of  this  is  that  the
successive  generations  do  not  superimpose  themselves  on  previous
generations in the same way that the Koch curve does:

The wire mesh curve
45°: A = A – A + A – A : A + A     

The leafy C-curve
60°: A =  + A – A – A –  – A – A – A + : A

The city block curve
90°: A = + AAA + : A     

The snowflake curve
60°: A = + A – A + + A – A + : A

This  type  of  formula  does,  however,  generate  some  interesting
results.

One way to make the total angle turned zero is to reverse the signs of
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the second half of the palindrome. One particularly interesting example
of this kind of formula is the Tetra-dragon curve shown below. If you
look carefully at the base lines shown in bold, you will see that while
the zig-zag line has a length of 3 units, the dotted line has a length of √3

units. The Hausdorf dimension2 of this curve is therefore log 3
log√3

= 2

It is also the case that the curve never retraces itself and it is therefore
a space-filling curve. It has the same dimensions as a complete surface.
The second curve shown below also has dimension 2 and is also space-
filling. 

The Tetra-dragon curve
120°: A = A + A - A : A     120°: A = A + AA – A : A

Here are two more examples of palindromic formula with reversed 
signs.

90°: A = A – A + A + AA – A – A + A : A     60°: A =  A – A – A – A + A + A + A : A

2 For a definition of Hausdorf dimensions see the Appendix.
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Twin Formula Fractals
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

All the fractals on the previous page employ a single formula. But
many interesting fractals can be drawn using multiple formulae.

Suppose we start with the Koch curve whose formula is

60° : A = A + A – – A + A : A
Now suppose that we want to do something different with the 'tent'.

We can define a new variable B. Lets start by defining B = B.  This is
the complete formula:

60° : A = A + B – – B + A : B = B : A

and this is the result of the second iteration:

The two horizontal sections have been expanded but the middle 'tent' 
is unchanged because, at the end of the day, 'B' just means 'step forward 
one unit'. Here is the third iteration:

Now try to guess what the following formula does:

60° : A = A + B – – B + A : B = BB : A

i.e. replacing B = B with B = BB. If you deduced that the middle tent 
would be twice as big, you would have deduced correctly. Here is the 
second iteration:
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You might be a bit surprised by the third iteration, though:

On the other hand, it makes perfect sense that each new iteration 
would generate smaller and smaller 'tents'.

Using an angle of 90° instead of 60° generates a lovely binary ruler:

Now suppose we use the formula B = A. i.e. 
60° : A = A + B – – B + A : B = A : A

You could be forgiven for thinking that this would be exactly the 
same as using the original Koch formula – but you would be wrong. The
second iteration does what you expect (because at the end of the day 
(i.e. at the bottom of the recursive pile) B is the same as A. But the third 
iteration is different. To see why this is we have to expand the formulae 
as if we were doing the iterations by hand: After the first iteration A 
becomes (A + B – – B + A) and B becomes A so the result is

 (A + B – – B + A) + A – – A + (A + B – – B + A)
which looks like this:
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The next iteration, however, becomes:

((A + B – – B + A) + B – – B + (A + B – – B + A)) + B – – B + ((A +
B – – B + A) + B – – B + (A + B – – B + A)) 

which looks like this:

Things get more interesting if we allow B to be a completely new
formula but I defy any one to predict the results without trying it out on
a computer. Take this formula for example:

60° : A = A + B – – B + A : B = A + A : A

This is the astonishing result!

Another  interesting  fractal  is  one  which  generates  a  kind  of
Sierpinsky carpet. Its definition is:

90° : A = A+A–A–A–B+A+A+A–A : B = BBB : A
and it looks like this:
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Sierpinsky carpet base lines Sierpinsky carpet (depth = 5)

Here are a few more colourful examples:

60° : A = –AA+BB+AA– : B = A : A+++A 120° : A = A+B–A–B+A : B = BB : A+B+B

45° : A = +A+B+A+B+A+ 
B = –B–A–B–A–B– : A 120° : A = B–AAA–B : B = BB : A
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Often it is a good idea to make the definition of B a mirror image of
A (i.e. the same but with all the signs reversed.) A good example is the
Dragon curve whose definition is:

 90° : A = A – B : B = A + B : A

This curve has many interesting features. Like the Tetra-dragon curve
on  page19 it  is  a  space-filling  curve  with  Hausdorf  dimension  2.
Amazingly, you can make a Dragon curve with a strip of paper! If you
fold a strip of paper repeatedly in the middle, then open it out so all the
folds are at right angles, this is what you get!

If you could fold it 11 times (!) it would look like the figure above.

Another remarkable feature of the dragon curve it that, in spite of its
complex shape, it will tile the plane!.

24
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Yet more interesting fractals can be generated by using definitions of
B in which the letters are reversed as well as the signs. The Arrowhead
curve is an example. The basic pattern (shown on the left below) is this:
+ A – A – A + which  generates  half  of  a  hexagon.  To generate  the
Arrowhead curve, however, we need to modify this so as to produce the
pattern on the right.

    

Instead of the three segments being the same, it is clear that the first
and third segments are different so the definition of A must be

A = + B – A – B +

There are many definition of B of the form
B = – X + X + X –

(where X is either A or B) will generate the next step but the one we 
want is:

B = – A + B + A –

The Arrowhead Curve

25



One of the most interesting of all the L-system fractals is the Peano-
Gosper  curve. It has seven segments and the characteristic angle is 60°. 

Tracing through the first iteration (shown above in bold) reveals that
the first iteration the formula has the form:

A = X + X + + X – X – – X X – X +
(The final + is necessary to ensure that we end up facing the same 
direction in which we started.)

A careful examination of the second iteration shows that the second,
third and last segments are reversed. The formula we need is therefore:

A:  A + B + + B – A – – A  A – B +

The formula for B is going to have the same basic form as that of A
and to achieve the desired result we have to reverse not only the signs
and the letters, but also the direction of the formula too. i.e. 

B:  – A + B B + + B + A – – A – B

Like the dragon curve, the Peano-Gosper curve is space-filling. This 
is the result:

26

The Peano-Gosper curve



The peano-Gosper curve (depth = 4)

The peano-Gosper curve (depth = 5)

Interestingly, this curve fits exactly into the Gosper flowsnake curve
described on page 10.
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Advanced Lindenmayer Formulae
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

A major restriction on the formulae which we have considered so far
is that, since every line is replaced by a squiggle which begins and ends
at the same points, every point in one level is repeated at every deeper
level. Often this is exactly what we want but if we relax this condition a
whole new class of fractals become possible.

Consider,  for  example,  a  ruler  which  is  divided  into  inches,  half
inches, quarter inches etc. etc. each division being shorter than the last.
It is clear that this is a fractal structure with each division being made up
of two copies of itself. What I am looking for is a formula which will
produce the following sequence:

Now it is easy to see that there is no way the original four corners of 
the square in the first image can be placed on the eight points in the 
second. So how is this achieved? The answer is that we must separate 
the steps from the formula. Here is the solution:

angle: 90°; A = + S – a S a – S +; start: A

where 'S' means 'step forward' and the lowercase 'a' means 'carry out 
formula A but without stepping forward'.

You can see that the first iteration (which simply ignores the a's) will 
result in + S – S – S + which is a simple square but the second iteration 
will generate the following series of steps: + S – (+ S – S – S +) S (+ S –
S – S +) – S + which is what we desire.

It has to be admitted that it is almost impossible to work out from the
formula what the result is going to look like but the opposite page 
shows four more amazing fractals with their respective formulae.
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The Castle curve
A = a S – S + S – a S + S + a S – S + S – a

Angle: 90°; Start: A S + S + A S + S  

The Sierpinski curve
A = + b – S – b + ; B = – a + S + a  –
Angle: 45°; Start: A – – S – – A – – S

The Hilbert curve I
A = + b S – a S a – S b +;
B = - a S + b S b + S a -

Angle: 90°; Start: A  

The Hilbert II curve
A = a S b S a + S + b S a S b – S – a S b S a
B = b S a S b – S – a S b S a + S + b S a S b

Angle: 90°; Start: A
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Lindenmayer Weeds
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

All  the  Lindenmayer  systems so  far  considered  produce  a  single,
unbroken  curve.  An  extra  refinement  of  the  Lindenmayer  system
permits you to add branches. For example, suppose we wish to draw a
simple fractal tree along the following lines:

A 'tree' is basically a 'trunk' which reaches a 'fork' which divides into
two 'branches'  each of which itself  is  a  'tree'.   We can translate  this
formally into the following sequence of instructions:

Draw the trunk
Turn left
Draw a tree
Return to the fork
Turn right
Draw a tree

In  the  Lindenmayer  systems  we  have  met  so  far,  the  instruction
'Draw the trunk' is translated into 'Step forward one unit' which is coded
'S'. Turn left is '+' and turn right is '–'. 'Draw a tree' is, of course, coded
as the whole sequence of instructions 'A'. But how do we 'Return to the
fork'?

To do this we need to record exactly where we are when we reach the
fork. This is done using the left square bracket '['. Then when we wish to
return there we use the right square bracket ']'. The complete formula is
therefore:

A = S [+A] – A;    Angle: 15°;    Start: A
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A simple tree (depth = 7)
A = A [+A] – A

Angle: 15°; Start: A

Bourke Weed
A = B – [[a]+a]+B[+Ba] – a

B = BB
Angle: 22°; Start: A

Bourke Club Moss
A = aSb [+a] [– a]

B = b [ – SSS] [+SSS] Sb
Angle: 32°; Start: A

Bourke Bush
A = AA+[+A–A–A] – [–A+A+A]

Angle: 22°; Start: A

Three of the above systems are taken from Paul Bourke's excellent
website:

http://paulbourke.net/fractals/lsys/
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The Chaos Game
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Arm yourself with thee poles and a bucket full of pebbles. Go to a
nearby field and stick the three poles anywhere in the ground. Take one
of the pebbles and throw it as hard as you can. Walk over to where the
pebble has landed. Choose one of the flags at random and walk just over
half  way  towards  it.  Place  another  pebble  on  the  ground.  Choose
another flag and do this over and over again until you have run out of
pebbles. When you have finished, look at where the pebbles have ended
up. You will be astonished to see that (apart from the first few pebbles)
they have all ended up in piles tracing out a Sierpinsky triangle (see
page 14) as shown below.

This is what is known as an attractor. If there had been just one pole, 
you would have placed a line of pebbles heading towards the pole; with 
two poles you will end up placing them in heaps along the line between 
the two poles; but with three or more poles, it is clear that the attractor 
is, in fact, a fractal.

By using more poles and adding other restrictions such as 'any pole 
except the one you have just visited', 'any pole except the ones on each 
side', 'any pole except the one opposite' etc. you can generate a host of 
other interesting patterns. The third one opposite was generated by 
'forbidding the circle in the middle'.
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4 poles: 52%: not previous    4 poles: 51%: not opposite

4 poles: 52%: forbidden circle    5 poles: 59%: not previous

6 poles: 50%: not neighbour    6 poles: 68%: not opposite
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Linear Transformations
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

I don't know why the procedure described on the previous pages is
called 'the Chaos Game'. It seems to me remarkable that such beautiful
order can emerge from the apparently random placing of pebbles.  In
fact, these fractals are a special case of what is known as an Iterated
Function System or IFS.

The basic principle is the same but instead of  just walking a fixed
fraction of the distance to a fixed pole, you calculate the position of the
next pebble (x', y') using a pair of mathematical formulae:

x ' = ax + by + e
y ' = cx + dy + f

(1)

where (x, y ) is the current location and a, b, c, d, e and f are constants. 
This set of equations comprises a linear transformation. It is linear 
because it only contains terms in x and y (not x2 , xy etc.) and because of
this, straight lines are always transformed into straight lines.

It is useful to see what happens to a square when it is acted upon. For
example the transform

 x ' = 0.5 x + 0.25 y + 0.2
y ' = 0 + 0.5 y + 0.2

(2)

causes a unit square to be scaled down to half its size, skewed sideways 
and moved to s new position like this:

The values of e and f are responsible for moving the square; it is the 
values of a, b, c and d which scale, skew and rotate the square.
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We can now see why the Chaos Game produces the results which it
does.  Each  time  you  walk  towards  a  pole,  you  are  reproducing  the
whole diagram but at a smaller scale. The pattern is therefore a result of
three linear transformations as illustrated below. 

This fractal was generated using three transformations whose coefficients
are:

    a      b     e                    c      d        f
 0.45   0    0                     0    0.45    0
 0.45   0    0.55                0    0.45    0

     0.45   0    0.275              0    0.45    0.55

It is also easy to see why the result is a fractal.  Each transformed
square must contain a copy of the whole image, and, of course, each
copy  must  contain  three  more  copies  of  itself  each  or  which  must
contain … etc. etc.

It is the Droste Effect all over again.
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Four transforms will generate the Koch curve:

Only two are needed for the Levy C-curve:

It is important to appreciate that all the information necessary to 
create the fractal resides in the transformations. The transformations 
define the fractal – and the fractal defines the transformations. This fact 
has been used to create very efficient algorithms for compressing what 
appears to be complex data.

Some other IFS symmetrical systems are illustrated opposite.
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A spiral of spirals
Two transformations of very different sizes

  

Curlicue
Three transforms on a hexagon

Snowflake
Two transforms: one unscaled at 60°

the other reduced but not rotated   

Doily
Three transforms; two at an angle

and one reduced
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The Barnsley Fern
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

In 1988 Michael Barnsley proved an important theorem in 
mathematics called the collage theorem. Basically what it says is that if 
you can cover an arbitrary shape with smaller copies of that shape, then 
the transformations which define the copies will generate the original 
shape when used as an IFS.

It is relatively easy to see how this works in all the cases illustrated 
on the previous pages. This is because the rotation angles were chosen 
so that the resulting fractal would have a high degree of symmetry. But 
Barnsley's theorem applies to any shape. How can this be?

Well, if the shape is truly random then you are going to need a huge 
number of transformations to cover it completely. Only those shapes 
which have a degree of self similarity can be covered with a small 
number of transformations. As an illustration, Barnsley considered a 
fern.

As the illustrations below show, there are basically three ways in 
which a fern is self-similar, the most important of which is the fact that 
the whole leaf minus the lowest two leaflets is a smaller copy of the 
whole leaf. And of course, each of the leaflets is a much reduced copy 
of the whole leaf too.
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More 

39

This fern was created using the following transformations:
a,         b,        e   c,      d,          f p
0.85,   0.05,   0.034  0.04, 0.795,  0.142 65
0.13,  -0.27,   0.209  0.3,   0.15,    0.103 15
-0.12,  0.325, 0.264 0.3,    0.201,  0.044 15
0,        0,        0.24 0,       0.2,      0 5

The column labelled p is a probability factor. The high value assigned to the first transform
ensures that the iterated points will reach a long way up the frond.

The fourth transform simply draws the stem



IFS Fractals in Nature
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Three reduced transformations
One straight, one rotated left and the other

rotated right

  

A coral
Three transformations rotated and skewed

Ammonite
Two transformations

  

A spiral galaxy
Two transformations
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A tree
Five transformations. One each for the four main branches and one for the trunk.



IFS Fractals in the Complex Plane
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

In  the  chaos  game with  three  poles  the  rule  was to  step  halfway
towards a random pole.  This is  rather like taking the cube root of a
complex number because when you take the cube root of a complex
number  z (at the point P) there are always three possible answers as
illustrated below.

The rule is: take the cube root of the distance of the point P from the
origin (this is known as the 'modulus' of z) and divide the angle it makes
with the X axis (the 'argument' of z) by 3. This gives you the first root
R1. The other  two roots R2 and R3 are the same distance from the
origin but at 120° to the first root.

We  can  play  the  chaos  game  in  the  complex  plane  by  simply
choosing one of the three roots at random; then take the cube root of
that and so on and so on.

Unfortunately the result is a bit disappointing. All we get is a simple
circle. The reason is clear to see. Every time we take the cube root, the
modulus gets closer and closer to 1. (Even when the modulus is less
than 1,  the cube root gets  closer to 1.) Eventually we find ourselves
hopping round a circle at random.

To make things a bit more interesting, what we do is to subtract a
small constant (complex) number c = a + ib from z before we take the
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cube root. To put it another way we are going to iterate the function

z ' =
3√z − c (3)

Now we are getting somewhere. This is what we get with various 
different values of c.

C = 0.5i C = 0.5 + 0.5i

C = i C = 0.7 + 0.5i

As you can see, different values of c generate different shapes; some
of  them  consist  of  a  distorted  circle  while  others  break  up  into
fragments. Not surprisingly they all exhibit rotational symmetry of order
3. These are the Julia sets of equation  (3).
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Standard Julia Sets
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Although  the  Chaos  Game  only  works  with  a  minimum of  three
poles, the complex chaos game works just as well with square roots.
This time we subtract  c then takes the square root of the modulus and
halve the angle. The following diagram shows the whole process and
corresponds to the equation z ' =

2√z − c

The following pseudo-code shows how to do it:

DIM: x = 0, y = 0 any initial point will do

FOR I = 1 to 10000 plot as many points as required
     CALL: Iterate(x, y) update x and y
     CALL: PlotPoint(x, y) plot a point at a suitable point
NEXT

DEFINE: Iterate(BYREF x, BYREF y) x and y must be called BY REFERENCE
x = x – a : y = y-b so that they are changed by the routine

      DIM: r = SQRT(x*x + y*y)
      DIM: a = ARCTAN(x, y) ARCTAN must deal correctly
      x =  SQRT(r) * COS(a / 2) with all four quadrants
      y = SQRT(r) * SIN(a / 2)
      IF RANDOM(2) = 0 THEN x = -x: y = -y choose one of the roots at random
END_DEFINITION

DEFINE: PlotPoint(x, y) Plot a point on the screen corresponding to (x, y)
      …
END_DEFINITION
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A grid of Julia sets with a = -0.25, 0 and 0.25; b = 0, 0.25, 0.5 and 0.75
Note that all the sets are rotationally symmetric. Sets with negative b are the same as those with

positive b. The further you go from the origin the more fragmented the sets become.

45



Hopalong Fractals
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Basically, any IFS system, whether is be the Chaos Game, a set of
linear transformations or a complex mapping can result in one of four
possibilities. The iterated point can either vanish off to infinity, home in
on a fixed point, cycle round a set of fixed points or wander through an
infinite set of fixed points without ever repeating itself. Obviously we
are  most  interested  in  the  latter  behaviour  and  it  is  this  kind  of
behaviour which is termed a 'strange attractor'.

In all the cases we have studied so far, we have had to introduce an
element of randomness into the process in deciding which transform to
use or which root to take. If we don't do this, all our examples simply
home in on a fixed point. For a long time it was thought that this would
always be the case with a single transform but in 1976 the biologist
Robert  May  drew  attention  to  the  curious  behaviour  of  the  simple
logistic  equation  x'  =  Ax(1  –  x)  which  exhibits  remarkable  chaotic
behaviour  when  A >  3.75.  (For  a  lot  more  detail  on this  fascinating
equation see my companion book: Chaos and the Logistic Equation.)
Since the equation only has one variable, the resulting patterns are not
very exciting but soon, other researchers were devising single-valued
transforms  in  2  or  more  variables  which  exhibited  visually  more
interesting behaviour.

One of the first was discovered by Michel Hénon:

x ' = 1 − ax2
+ y

y ' = bx
(4)

where a and b are constants. Typically a = 1.4 and b = 0.3. This is what 
it looks like:
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Since then thousands of other examples have been found, some of 
which are illustrated below.

Star of Bethlehem
x' = 0.6 – 1.1y

y' = 1.2x – 0.6xy²

Linton's 'Ghost'
x' = sin(1.2y)

y' = – x – cos(2y) 

De Jong
x' = sin(2y) – cos(2.5x)

y' = sin(x) – cos(y)

Tinkerbell
x' = ( x² – y² ) + 0.9x – 0.6y

y' = 2xy + 2x + 0.5y

Contrary to what you might think,  the point (x,  y) does not move
smoothly  along  these  apparently  linear  structures;  rather  it  hops
seemingly  at  random  from  one  point  to  another  –  hence  the  name
'hopalong  fractals'.  Detailed  analysis  shows  that  the  structures  have
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infinite detail and the way the point moves is chaotic in the sense that
two points initially very close together soon diverge widely apart.

The range of different shapes is astonishing. Some like the Star of
Bethlehem  resemble  crumpled  pieces  of  paper;  others  like  Linton's
'Ghost' and the Tinkerbell attractor are more like tangled balls of string;
others combine both features while the majority defy description. Many
have a three dimensional appearance even though they only employ two
variables x and y. The reason for this is rather subtle. Take the Tinkerbell
attractor for example. This appears to have a large loop which passes
over a number of smaller loops. Now as I have said; this is an illusion.
The attractor is just a flat map of points which are visited apparently at
random.  Every  point  is  equally  important.  So  is  there  anything  that
distinguishes the points in the large loop from the points in the smaller
loops? The answer to this is yes. What distinguishes the two loops are
the  previous values of x and y.

Now the equations which define the Tinkerbell attractor are quadratic
– that is to say, they contain terms like x2 and xy. Notwithstanding, given
the current values of  x and  y the next pair of values is unique. On the
other hand, if you were asked to find the previous values of x and y you
would have to solve a quadratic equation which,  in general,  has two
solutions.  What  this  means  is  that  while  every  point  has  only  one
offspring, it may have two parents (or more in the case of cubic and
other equations). Usually, however, one of those parents will not be on
the attractor so it can be discounted. Very occasionally, however, both
parents are potentially on the attractor and this is the case at the points
when the large loop crosses the smaller loops. All the points on the large
loop arise from previous points with a positive value of y; these points
have been coloured red. All the points on the smaller loops (coloured
blue) arise from points with a negative value of y. The points where the
loops cross are points which can be reached from either parent.

One way of making this crystal clear is to introduce a new variable z
obeying  the  equation  z'  =  y and  plot  the  point  (x,  y,  z)  in  three
dimensions.  This  can  be done on a  computer  screen  by rotating  the
object and viewing it from different angles or (as here) by colouring the
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points according to the z coordinate. The results can be extraordinarily
beautiful.

Even more variety can be achieved by making z an equal partner in
all three equations. Some of the amazing results are illustrated below
(though, sadly, not in 3D!)

Ribbon
x' = 0.3x – y
y' = x² – z

z' = x  – 0.2y + 0.8y2

Bow
x' = 1 + y – xz

y' = – 0.8x2 – 0.5y2 + 0.1z2

z' = x + y

Jellyfish
x' =- 0.4 + 0.7y

y' = 1.2 x – z +0.7x2 -0.9xy
z' = – x + y – x2 – y2 

Square dance
x' = – 1.2z2

y' = 1.2 z + 0.6x2

z' = – y – 1.2x2
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Barry Martin Fractals
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

In September 1984 an article appeared in Scientific American which
described  an  amazing  IFS  discovered  by  Barry  Martin  of  Aston
University, Birmingham. To understand how it works, lets start with a
simpler set of functions namely:

x ' = x+ y
y '=−x

If you follow this iteration by hand you will find that it returns to 
itself after exactly 6 iterations. For example the point (1,1) becomes 
(2, –1) then (1, –2) then (–1, –1), (–2, 1), (–1, 2) and back to (1, 1). 
These points trace out a slightly bowed rectangle.

If now you try the functions:
x ' = bx+ y

y ' = −x
(5)

where b is not equal to 1, you will find that any initial starting point will
typically trace out an ellipse. (I say 'typically' because there are, no 
doubt, certain values of b which will render the orbit periodic.)

I  suspect  that  Barry  Martin  wondered  at  this  point  what  would
happen if he tried putting x' = bx2 + y but he will have discovered that all
initial points spiral off to infinity. No doubt he tried x' = b√x + y too but
that leads to an error whenever  x is negative. The obvious thing to do
therefore it to invent a sort of continuation of the square root function
into the negative region by taking the square root of the absolute value
of x and then replacing the sign. This is the sort of thing:

x ' = SGN( x)√∣bx∣+ y
y ' = − x

(6)

This looked promising (see the illustration opposite top left) but there
weren't enough parameters to fiddle with. Eventually he came up with 
the following functions:

x ' = y ± SGN( x)√∣bx − c∣
y ' = a − x

(7)

which generates the remarkable fractals opposite.
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x = y + SGN(x)√|4x|
y' = – x

x = y + √|2x|
y' = 1 – x

x = y + ABS(x)
y' = 1 – x

x = y + SGN(x)√|4x – 0.5|
y' = 1 – x

It is obvious that these images are fractal in the sense that they are 
full of detail but they cannot be called strange attractors. This is 
because  different starting points generally produce different results. In 
fact, most starting points appear to generate  different cyclic patterns. 
For example, if the starting point is inside one of the empty ovals in the 
fourth image above, the pattern generated will be a set of  10 ovals 
within the empty spaces, not a fractal.
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Basins of Attraction
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Any attractor, whether strange or periodic, has what is called a 'basin
of attraction'. This is the set of all starting points which home in on the
attractor.  The  illustration  below shows the  basin  of  attraction  of  the
Hénon attractor.

The basin of attraction of the Hénon attractor

To create  the above image,  points  which wandered  off  to  infinity
have been coloured  according to  the  number  of  iterations  needed to
reach an arbitrary bailout value. Starting points inside the white region
soon converge on the attractor.

The Hénon attractor  has  a  fairly simple basin but  some attractors
have fractal basins and the shape of the basin can be as interesting as the
fractal itself. Two such basins are illustrated opposite.
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The Tinkerbell basin of attraction
x' = ( x² – y² ) + 0.9x – 0.6y

y' = 2xy + 2x + 0.5y

The Butterfly Wings basin of attraction
x' = xy

y' = x2 – 1.9
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Constructing Attractors
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

It seems impossible to predict the shape of an attractor given the set
of equations which define it, particularly as sometimes, small changes in
the values of the constants in the equation can make dramatic changes to
the  attractor.  There  are,  however,  a  few general  rules  which  we can
apply.

Obviously, attractors may be moved and scaled using a simple linear
transformation, for example, by replacing all instances of x with ax + b.
Sometimes this technique can be used to simplify a set of equations but
this is not always possible

Any set of equations with the following form:

x ' = x × f (x2 , y)
y ' = g ( x2 , y)

(8)

will be symmetrical about the Y axis. This is because whether x is 
positive or negative, y' will always have the same value but the sign of  
x' will be determined by the sign of x. The butterfly wings attractor is a 
good example.

Likewise, to construct an attractor which is symmetrical about the X
axis you need the following set:

x ' = f (x , y2
)

y ' = y × g (x , y 2
)

(9)

To generate an attractor with both symmetries, use:

x ' = x × f ( x2 , y2
)

y ' = y × g (x 2 , y2
)

(10)

The  Spider's  Web  attractor  shown  opposite  is  a  lovely  example,
particularly when it is rotated in 3D.
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Is is fairly obvious that the basin of attraction of any attractor with a
degree of symmetry will share that symmetry. The converse, however, is
not true.  In the following case, it is clear that the basin of attraction can
still  have  rotational  symmetry  even  when  the  attractor  itself  is
asymmetrical:

x' = 1.6 – 0.4 x2 –  y2

y' = 1 – 1.5 xy
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The Spider's Web basin of attraction
x' = x (1.2  –  x2  +  y2)
y' = y (1.2 + x2 – 1.5y2)



The reason why the basin has rotational symmetry is because after 
the first iteration, both the point (x, y) and the point (–x, –y) will jump to
the same point. This will happen whenever all the terms are even 
functions of x and y.

To construct an attractor with rotational symmetry it is necessary 
that the two points (x, y) and (–x, –y) will follow the same orbit with 
reversed signs. This can be achieved by using odd terms only in both 
equations –  i.e. terms like x, x3, xy2 etc. and no constants.

 Here is a lovely example with a particularly simple set of equations 
called the Butterfly knot. Its equations are:

x ' = −0.8 x + y
y ' = x(1.2−x2

)
(11)

The Butterfly Knot

Who would not like to receive a birthday gift tied with this ribbon!

It cannot be said to have a very interesting basin of attraction though.
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The basin of attraction of the Butterfly Knot

In the following case, the attractor is just a thin line but the basin of
attraction has a fine fractal structure.

The basin of attraction of the function
x' = –1 + 2x2 – y2

y' = xy
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Chaotic Basins of Attraction
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Generally speaking basins of attraction are fairly well-behaved. They
may have rather crinkly edges and curious shapes, but they do not often
exhibit much fractal behaviour.

But even the attractors like the Tinkerbell and Spider's Web can show
interesting basins of attraction if you alter one of the parameters a bit to
push it into a chaotic mode. For example – if you change one of the
parameters of the Spider's Web attractor, the attractor itself disappears
and  is  replaced  by  the  fractal  structure  pictured  below.  (Strictly
speaking,  I  suppose these should be  called 'regions  of  repulsion'  not
'basins of attraction' because there is no attractor – all points rush off to
infinity more or less quickly.)

The Spider's Web Fractal basin of attraction
x' = x (1.4  –  x2  +  y2)
y' = y (1.2 + x2 – 1.5y2)
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The Butterfly Wings fractal basin of attraction when
x' = xy   and   y' = x2 – 2.1

A detail of the Tinkerbell fractal basin of attraction when
x' = ( x² – y² ) + 1.1x – 0.6y

y' = 2xy + 2x + 0.5y
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The Standard Function
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Of all the hopalong functions, the simplest and most widely studied
is the following:

x ' = a + x2
− y2

y ' = b + 2 xy
(12)

where a and b can take any values.
When a and b are both zero, the basin of attraction is the unit circle

and the attractor is a single point at the origin.

The basin of attraction of the standard function when a = 0 and b = 0
Two typical orbits are shown, one originating inside the unit circle, the

other outside.

As a and b are varied, the perimeter of the basin of attraction takes
on a variety of interesting fractal shapes. For example, as a is increased
in the negative direction, the circle elongates and is gradually pinched
into a series of approximately circular lobes.

(The reason for the bilateral symmetry of the basin is that, provided
b = 0, changing the sign of x or y only changes the sign of y' – not its
magnitude.)
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x' = -0.7 + x2 – y2 

y' = 2xy

Setting b to something other than zero has the effect of skewing the
basin  so  that  it  no  longer  has  bilateral  symmetry,  only  1  rotational
symmetry:

x' = – 0.7+ x2 –  y2 

y' = 0.25 + 2xy

If  either  a or  b stray  too  far  away from the  origin,  the  attractor
disappears and the basin of attraction breaks up into fragments. There is
still  an infinite  set  of quasi-periodic points  (i.e.  points  which do not
escape to infinity) inside this image so the Julia set is still there; it is just
too small to see. Its presence is, however, indicated by the lovely spirals
which have infinite depth.
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x' = – 0.75+ x2 –  y2 

y' = 0.18 + 2xy

You will have noticed that the shape of these basins is similar to the
Julia sets which we plotted on page 44. But why is this?

The Julia sets on page  44 were generated by a rather complicated
algorithm which involved iterating the complex function

z ' =
2√z − c (13)

The result of this operation is that all points in the plane home in on a
strange attractor – the  Julia set.

Now the reverse of this function is

z ' = z2 + c (14)
and the result of this operation is that many points in the plane will 
diverge to infinity, but with certain small values of c, some points home 
in on an attractor.

It  is  particularly  easy  to  convert  this  complex  equation  into  a
hopalong function. If  z = x + iy then z2 = x2 + 2ixy – y2 and hence we
get:

x ' = a + x2
− y2

y ' = b + 2 xy
(15)

which is equation  (12).
The following pseudo-code shows how easy it is to implement this
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algorithm on a computer.

DIM a = ***, b = *** set a and b to a point in the plane

FOR q = 0 TO screenheight
 FOR p = 0 TO screenwidth

DIM: count=0
(x, y) = complex(p, q) set (x, y) to start
REPEAT

DIM tempx = x keep a copy of x
     x = a + x2 – y2 update x

y = b + 2 × tempx × y update y
count = count + 1         

UNTIL EITHER count = 1000 OR x2 + y2>10000   
IF count=1000 THEN

CALL : PlotPoint(p, q, Colour.Black)
OTHERWISE

CALL : PlotPoint(p, q, Colour(Count))
NEXT

NEXT

DEFINE complex(p, q)
*** return a complex number corresponding the the point (p, q)

END_DEFINITION

DEFINE PlotPoint(a, b, colour)
*** Plot a point on the screen corresponding to (a, b) in colour

END_DEFINITION

DEFINE Colour(c)
RETURN *** return a suitable colour

END_DEFINITION

The bailout  value  of  10000 is  quite  arbitrary,  as  is  the  maximum
value of the count. It may be assumed that if the point survives for 100
iterations, it has found the attractor. Likewise, if it reaches a point which
is more than 100 units from the origin, it may be assumed to be heading
off to infinity.

Note the use of a temporary value for  x.  It is essential that, when
calculating y, the original value of x is used, not the new one.
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Reverse Hopalong Attractors
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

As we have seen, the boundary which separates the two basins of
attraction is none other than the Julia set created by the reverse function.
This suggests that we should be able to find interesting Julia sets by
iterating the reverse functions of the hopalong functions which we have
discovered.

Unfortunately, this is not always easy. One function which is easy to
reverse is the Butterfly Wings attractor whose equations are:

x ' = xy
y ' = x2

− 1.9
(16)

The reverse of this is:

x ' = ±√ y + 1.9

y ' = ±
x

√ y + 1.9

(17)

As with the earlier Julia sets, we must choose either the positive of
the negative square root at random. This is the astonishing result:

The reverse Butterfly Wings attractor
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The outline of the basin of attraction shown on page 53 is clear – but 
unlike the previous case, the interior is not empty. The reason for this is 
that, because we are choosing a square root at random, we are exploring
all possible routes to the attractor – not just the reverse of the route 
which would be taken by the original function. Nor is there any 
guarantee that a point which actually starts on the Julia set will remain 
there. On the other hand, we can be sure that all points reached by this 
reverse function will remain within the boundary defined by the Julia 
set.

Other suitable examples are not easy to find. Some function appear 
to wander about within the basin without appearing to migrate to the 
Julia set at all. Here is one which does trace the expected outline.

The forward functions are:
x ' = 0.1 − 1.1(x + y)

y ' = x2
+ 1

(18)

and the reverse functions are:
x ' = ±√ y + 1

y ' =
0.1 − x

1.1
± √ y + 1

(19)

Forward hopalong attractor Reverse hopalong attractor
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The Mandelbrot Map
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

We  now  come  to  the  most  famous  fractal  of  them  all  –  the
Mandelbrot map.

We  saw  on  page  44 how  the  action  of  repeatedly  subtracting  a
constant and taking the square root of a complex number results in a
Julia set with a familiar fractal  shape.  We also noted that for certain
constants, the Julia set is connected. What we did not point out at the
time was that  if  the Julia set  is  connected,  then all  points inside the
boundary transform into points inside the boundary, and, of course, all
points outside it transform into points outside it. The reason for this is
that, as we have seen, a Julia set marks the boundary between different
basins of attraction of the reverse function. It is often a good idea to
emphasize the different regions by filling the interior of a connected
Julia set in a different colour. This is called a 'filled Julia set'. All the
points  of  a  filled  Julia  set  are  stable  under  iteration  of  the  reverse
function.

What is this reverse function? It is, of course:

z ' = z2 + c (20)
which may easily be turned into a hopalong function in x and y 
coordinates:

x ' = a + x2
− y2

y ' = b + 2 xy
(21)

Now lets  draw a  large  collection  of  filled  Julia  sets  for  different
values of c clustered round the origin. The result is shown opposite. All
the  connected  sets  lie  inside  a  large  heart-shaped blob and the  faint
outline of the familiar Mandelbrot Set can be seen emerging.

The question now arises – how can we easily distinguish those Julia
sets which are filled from those which are not? A close examination of
the filled Julia sets will reveal that, whenever the set is connected, the
starting point of (0,0) (called the 'critical  point')  will  be stable – but
when the set is disconnected, this point is always unstable.
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A map of all the filled Julia sets of the reverse function z' = z2 + c round the origin.
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This suggests a simple method of plotting the map in detail – just plot a 
black dot at every point c in the complex plane for which the starting 
point (0, 0) fails to diverge off to infinity. The result is shown opposite 
and it is immediately clear that we have discovered something quite 
special. The main body of the set is a cardioid but numerous lobes 
sprout off its edge and there also appear to be a few isolated blobs here 
and there.

In order to reveal even more detail in the region just outside the set
we colour these pixels according to the length of time taken for  z to
escape beyond an arbitrary bailout value. The result is no less stunning
for being so familiar.

The stable region can be imagined to be at  the bottom of a  deep
crater. Precipitous slopes tower round the shores of the lake while the
whole is set in a featureless upland plateau.

The Mandelbrot Map in 3D

It is essential to realise that while there is a different Julia set for
every point in the complex plane – but there is only one Mandelbrot
Map.

The pseudo-code for a simple Mandelbrot program is listed opposite.
It is worth comparing this code with that on page 63.  Basically the only
difference is that in the Julia code the constant (a, b) is fixed and (x, y)
is  set  to  the  screen  coordinates  while  in  the  Mandelbrot  code the
constant (a, b) is set to the screen coordinates and (x, y) is set to zero.
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The Mandelbrot Set – i.e. the set of all values of c which result in a
connected Julia set

FOR p = 0 TO screenheight
 FOR q = 0 TO screenwidth

DIM: count=0
(x, y) = (0, 0) set (x, y) to (0, 0)
(a, b) = complex(p, q) set constant (a, b) to the screen coordinates
REPEAT

DIM tempx = x keep a copy of x
     x = a + x2 – y2 update x

y = b + 2 × tempx × y update y
count = count + 1         

UNTIL EITHER count = 1000 OR x2 + y2>10000   
IF count = 1000 THEN

CALL : PlotPoint(p, q, Colour.Black)
OTHERWISE

CALL : PlotPoint(p, q, Colour(Count))
NEXT

NEXT

DEFINE complex(p, q)
*** return a complex number corresponding the the point (p, q)

END_DEFINITION

DEFINE PlotPoint(a, b, colour)
*** Plot a point on the screen corresponding to (a, b) in colour

END_DEFINITION

DEFINE Colour(c)
RETURN *** return a suitable colour

END_DEFINITION
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The Critical Point
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

An important question must now be answered. What is  so special
about the point (0, 0)? Why do we have to start at this point and what
happens if we don't?

Let us review what actually happens when a starting point z0 is 
iterated using a certain constant c. The first iteration will take it to a 
point z1 = f 1(z0); the second to  z2 = f 2(z0) etc. These points can be 
referred to as the subsequent 'images' of z0. 

Now any given starting point z0 may be classified as follows3 (the 
terminology is my own):

• Points which eventually diverge off to infinity are called 'open'
• Points which do not diverge off to infinity are called 'closed'
• If a closed point is surrounded by other closed points, then the 

point is said to be 'stable'; if, however, points nearby are open, 
then the point is said to be 'unstable'.

• If a point is part of a finite periodic cycle then it is called 
'periodic'.

• If a point is both closed, stable and periodic then it is called 
'superstable'.

The first thing to point out is that for any value of c there is always at
least one closed point which instantly maps onto itself – the solution to
the equation  f  1(Z) =  Z. There are also many periodic points. e.g. the
solutions to the equation  f 3(Z) = Z will have periodicity 3. In general,
however, these points will be unstable. We are only interested in the
points  which  are  not  only  closed  but  stable.  If  c lies  outside  the
Mandelbrot set, the Julia set is disconnected cantor dust and there are no
stable points.

3 This list is not comprehensive. There are points called Misiurewicz points which 
are closed and unstable but which lead to periodic cycles and there are (I believe) 
points which are closed and unstable but which have no periodicity at all and 
behave chaotically.
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Now if c is inside the main cardioid of the Mandelbrot set, then there 
exists a unique superstable point Z where  f 1(Z) is equal to Z. Obviously
if we were to start at z0 = Z, the point would be instantly stable but we 
clearly cannot always do this because Z depends on c. On the other 
hand, provided we start reasonably close nearby, z will home in on Z. 
The set of all points which home in on Z is, of course, the filled Julia set
appropriate to the value c  – its  'basin of attraction'.

If c lies inside the secondary lobe 2 (the biggest secondary lobe) then
there is no single point which is stable. There is, however, a pair of 
points Z1 and Z2 such that f 2(Z) = Z. Similarly, in lobes with periodicity 
n there will by a cycle of stable points such that f n(Z) = Z.

We cannot work out in advance which points are super-stable (except
by solving a potentially infinite number of high order polynomial 
equations) but there are plenty of other points which home in on the 
stable cycle. The question is – of all these stable points, is there one 
which is stable for all values of c – i.e. is there a point which is common
to all the connected Julia sets? And if there is, why does it have this 
property?

In my companion volume 'Chaos and the Logistic Equation' I showed
that a point is only stable if the absolute value of the gradient of the
function is less than 1 at that point. I also showed that the gradient of the
nth order function at any point z0 is equal to the product of the gradients
of the basic function at the first n iterates of z0. For example: suppose a
function z1 = f 1(z0) (with a constant c) causes z0 to iterate to  z1, z2  etc.,
the  gradient  of  the  third  order  function   f  3(z0)  will  be  equal  to  the
product of the gradients of the first order function at z0, z1 and z2.

[d f 3(z)
d z ]

z 0

= [ d f 1(z)
dl z ]

z 0

× [ d f 1(z )

d z ]
z1

× [ f 1(z)
d z ]

z2

(22) 

The condition that the absolute value of this parameter must be be
less  than  1  can  always  be  met  by  choosing  z0 to  be  such  that   

[d f 1(z)
d z ]

z 0

= 0 . It follows that, if we start with z0 at the place where the

gradient of the  function  z1 = f 1(z0) is zero, the gradient of all the higher
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order functions will be zero at  z =  z0 and that, if there exists a nearby

point w where   f  n(w) = w and where ∣ [ d f 1(z )

d z ]
w

∣ < 1 ,  z is going to

home in on it. This point (i.e. the point z0 where the gradient of the first
order function is zero) is called the critical point of the function.

In the case of the standard Mandelbrot function z1 = z0
2

+ c  the

point where the gradient is zero will be when 
d z 1
d z 0

= 2 z0 = 0   –  i.e.

zcrit = (0, 0)

For example, suppose that c = (–0.9, 0). (this point is just inside the
secondary lobe 2 on the principal axis.) The following table shows what
happens to  z0 (= 0) for the next few iterations. G1(z) is the gradient of
f1(z) (= 2z) at  z and G2(z) is the gradient of the second order function
f1(z) (= 4z(z2 – 0.9) (all the imaginary components are zero.)

z
0 0.000 0.000 0.000
1 -0.900 -1.800 0.324
2 -0.090 -0.180 0.321
3 -0.892 -1.784 0.373
4 -0.105 -0.209 0.372
5 -0.889 -1.778 0.390
6 -0.110 -0.219 0.389
7 -0.888 -1.776 0.396
8 -0.111 -0.223 0.396
9 -0.888 -1.775 0.398
10 -0.112 -0.224 0.398
11 -0.887 -1.775 0.399
12 -0.113 -0.225 0.399
13 -0.887 -1.775 0.400

G
1
(z) G

2
(z)

The first column shows z gradually homing in on a period 2 cycle.
The gradient of the first order function oscillates up and down so the
point is prevented from settling on a single value; but the gradient of the
second order function is much better behaved and since it is always less
than 1, z will home in on the two points where f 2(w) = w.
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The following image shows the sort of things which happen if we do
not start  at  the point (0, 0). The stable region of the map (shown in
white)  is  distorted  and  certain  values  of  c which  were  stable  now
become unstable. It is only when we start at the point (0, 0) that the
stable area is maximum and there are no values of c which are unstable
in the standard map which become stable when a different starting point
is used.

Distorted map starting at (0.25, 0.5)

Cubic and higher order functions generally have more than one place
where the gradient is zero and, in consequence, they have more than one
critical point. If this is the case, the Mandelbrot set is usually taken to be
the set of all the points where at least one of the critical points is stable.

There is a lot more to be said about the Mandelbrot Map. For more 
detail see my companion volume 'The Mandelbrot Map – a layman's 
guide'.
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Mandelbrot Maps of Other Functions
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Here is a gallery of Mandelbrot Maps of some different functions.

The cubic equation has two critical points. In the second illustration, 
points which are stable from both are coloured white, points which have
only one stable starting point are coloured black.

The cubic Mandelbrot map
z' = z3 + c

A different cubic map
z' = z3 + z + c

The quartic Mandelbrot map
z' = z4 + c

Mandelbrot 2.5
z' = z2.5 + c
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Note that in the case of the Mandelbrot 2.5 map (i.e. z' = z2.5 + c) then
map has flaws in it. This is because there is always ambiguity when

calculating fractional powers.

The  quadratic logistic map
z' = cz(1 - z)

The cubic logistic map
z' = cz(1 - z2)

I call these 'logistic' maps because of the analogy with the 'Logistic
Equation' x' = Ax(1 – x).

A quadratic / reciprocal map
z' = z3/(z – 1) + c

The trefoil map
z' = c(z2 + 1/z)

The trefoil map appears to have regions of almost total chaos.
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The exponential map
z' = ez – Rz + c      (R = 1)

A different exponential map
z' = ez – Rz + c     (R = 1.2)

The exponential map z' = ez + c does not have a critical point but 
stable regions exists if we subtract a factor Rz. When R <= 1, the stable 
region comprises most of the negative half of the plane but when R>1 
the stable region reduces to a Mandelbrot-style blob. Amazingly, 
perfectly formed minibrots can be found everywhere in both images.

A different exponential map
z' = czez

The formula z' = czez generates a slightly different map. The 
prominent lobes are not genuine features of the map; they are produced 
by the necessarily finite value of the bailout value.
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A cosine map
z' = cos(z) + c

A different cosine map
z' = z + cos(z) + c

Maps based on trig functions like cosine generally repeat along the
real axis. Many have multiple critical points.

A different cosine map
z' = c cos(z) 

A minibrot in the same map
z' = c cos(z)

Minibrots like the one illustrated above can be found in almost all 
Mandelbrot maps. I suspect that this is because, on a sufficiently small 
scale, all curves look like parabolas so where there is a value of c where 
the orbit of the critical point is stable, nearby values of c will essentially
behave as if they are generated by a simple quadratic function.
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Non-standard Mandelbrot Maps
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

When translated into  x and  y coordinates, the standard Mandelbrot
algorithm becomes a simple two dimensional hopalong function:

x ' = x2
− y2

+ p
y ' = 2 xy + q

(23) 

It  is  natural  to  ask,  what  do  the  Mandelbrot  maps  look  like  for
functions  of  x and  y which  are  not  simply  translations  of  complex
polynomials. For example, what does the Mandelbrot map look like if
we change that 2 into a 4? Here it is:

Modified Mandelbrot Modified Mandelbrot (detail)

While it still has the basic structure of the Mandelbrot map and it
appears to be differentiable (that is to say, there are no places where the
depth algorithm produces a sudden large change), it does not have the
integrity or beauty of the original.

Changing the –  y2 into +  y2 distorts the map in a different way and
introduces apparently chaotic regions (i.e. the map is not differentiable).
The Julia set iullustrated corresponds to a point in the main 'minibrot' –
i.e. inside the small white sector to the left of the main area of stability.
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Modified Mandelbrot Julia Set

One  of  the  problems  is  that  for  a  function  to  produce  a  viable
Mandelbrot map, it should, ideally, have one critical point. i.e. a place
where the gradient of the function is zero. One such function is:

x ' = x2
+ y + p

y ' = x + y2
+ q

(24)

and its critical point is at the origin.
It has the following map but it has no stable basins of attraction.  Its

Julia sets are quite attractive. 

Non-standard map Non-standard Julia Set
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Newton-Raphson Julia Sets
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

As we have seen,  Julia  sets  mark the boundary between different
basins of attraction. Points inside a filled Julia set home in on a periodic
cycle; points outside it shoot off to infinity. On the other hand, there are
functions which never shoot off to infinity but which have two or more
attractors. One way of creating mappings with more than one basin of
attraction is to consider the Newton's method for finding the roots of an
equation. This claims that if z is close to one of the roots of an equation

f(z) = 0, then z ' = z −
f (z )

df / dz
will be even closer.

For example, if f(z) = z3 – 1, then df/dz = 3z and our mapping looks
like this:

z ' = z −
z 3 − 1

3 z
=

2 z 3 + 1
2z

(25)

Translating this into x, y coordinates is not that easy and if you wish
to  program  this  mapping  then  it  is  probably  best  to  use  dedicated
routines for multiplying and dividing complex numbers. (These are not
difficult but are beyond the scope of this little book.)

The result  of this  mapping is  illustrated opposite.  The three black
dots are the three cube roots of 1.  Each basin of attraction is  colour
coded  in  red,  green  and  blue.  The  boundary  between  the  basins  of
attraction is an infinitely detailed chain of pearls, each with a different
colour. The white pixels in the image effectively trace out the Julia set
for this mapping. Points on this boundary will take an infinite length of
time before deciding which root to go for.

Opposite below is a Julia map for the roots of the equation  ez = 1.
This equation has an infinite number of roots. The principal one (0, 0) is
just  off  to  the  right  of  the  picture  and  points  which  end  there  are
coloured  red.  Points  which  migrate  towards  the  positive  roots  are
coloured blue and points which migrate towards the negative roots are
coloured green. (The black regions take too long to compute.)
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The Julia map for the Newton-Raphson formula for the cube roots of unity.

The Julia map for the Newton-Raphson formula for the equation ez = 1
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Dynamic Systems
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

All the examples we have looked at so far are examples of discrete
dynamics. They are systems which jump from one point to the next at
discrete intervals. Of more interest to physicists are continuous dynamic
systems which move smoothly from one state to the next.  These are
usually characterized by one or more  differential equations. A simple
example is the harmonic oscillator which obeys the following equation
which  basically  says  that  the  acceleration  of  the  oscillator  is
proportional to the distance from the origin and directed towards the
origin:

d 2 x
dt 2

= −ω2 x (26)

We can equally well write this equation in the form of two first order
differential equations like this:

dx /dt = y
dy /dt = −ω

2 x
(27)

where y is the velocity of the oscillator.

The solution to this set of equations is well known:
x = Acos(ω t )

y = Aω sin (ω t)
(28)

Now suppose we wish to simulate this behaviour on a computer. To
do this we have to calculate what happens to x at discrete time intervals
dt.  We also  have  to  keep track  of  the  velocity  y at  each  point.  The
following pseudocode will do the trick:

DIM y = *** set the initial velocity
DIM x = *** set the initial position
DIM ω = *** set the angular velocity
DIM dt = *** set the time increment

LOOP
      a = -ω² x calculate the acceleration
      y = y + a * dt update the velocity
      x = x + y * dt update the position
ENDLOOP
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What  we  have  here  looks  suspiciously  like  a  discrete  dynamic
system. In fact if we eliminate the variable  a and simplify things a bit
we can see that at heart we have a single linear transformation:

x' = x + y dt
y ' = y − ω

2 x dt
(29)

or, to put it in the discrete iterative form with which we are familiar:
x ' = x + by

y ' = y + −bx
(30)

where b takes the role of the time increment dt and ω has been set to 1 
for simplicity.

Provided b is very small, x and y will describe a circle.

A circle approximated by a single linear
transformation

A single linear transformation with a
point attractor

Now as we have seen, this solution does not qualify as an attractor 
because different starting points generate different circles in the same 
way that different starting points generate different fractals using the 
Barry Martin algorithm.

If we introduce a small reduction factor in the x and y terms, we can 
generate a spiral. Now all initial points will home in on the origin.

x ' = 0.99 x + by
y ' = 0.99 y + −bx

(31)

as illustrated in the second of the above pictures.

This transform can be put back into the form of equation (12) by 
splitting off the small difference and incorporating it into the 
incremental term as follows:
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x ' = x + b(ax + y)
y ' = y + b(ay − x)

(32)

Now, when a is negative, the point will spiral into the origin and 
when a is positive, the point will spiral out to infinity.

That is all we can do with a single linear transformation. Either the 
point will describe a closed loop or it will spiral into a point or off to 
infinity. If we want to generate more interesting behaviour, we might 
first consider using a non-linear transformation. 

Equation (14) can be generalised to the following:
x ' = x + δ × f (x , y )
y ' = y + δ × g (x , y )

(33)

where f(x,y) and g(x,y) are other functions of x and y and δ is a very 
small constant.
But here we come across a simple consideration. Any functions f and g 
which result in genuine attractors can only take the form of periodic 
loops for the simple reason that in a 2 dimensional system a continuous 
line can never cross itself. (When it reaches the crossing point, which 
way will it go?). We can, however, use what we have learned to 
construct a set of equations which has a periodic loop as an attractor. 
One possibility is to devise a way of making a negative whenever the 
point strays too far from the origin and positive whenever it wanders too
near. A suitable function would be:

a = 1−(x2
+ y2

) (34)

and the complete transformation would be

x ' = x + δ × b((1 − ( x2
+ y2

)) x + y)
y ' = y + δ × b ((1 − (x2

+ y2
)) y − x)

(35)

This is,  in fact,  a  cubic equation and it  generates a  circular periodic
attractor whose 'basin of attraction' is the whole plane. Illustrated below
is a slightly simpler cubic equation which generates a rounded square.
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A cubic differential attractor in 2
dimensions

x ' = x + δ( x + y − x3)

y ' = y + δ(y − x − y3)

The functions do not have to be cubic. Even quadratic equations will 
generate periodic attractors. In the case below the basin of attraction is 
quite small.

A quadratic differential attractor in 2
dimensions

x ' = x + δ (0.9x − y − 2x2)

y ' = y + δ (2x − 0.8y − 2y 2)

85



Differential Attractors in 3 Dimensions
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Because 2 dimensional systems are limited to periodic attractors, it
follows that if we are to find any strange (i.e. fractal)  attractors in a
continuous dynamical system it  must have 3 or more dimensions.  In
other words it must be of the form:

x ' = x + δ × f (x , y , z )
y ' = y + δ × g (x , y , z )
z ' = z + δ × h( x , y , z )

(36)

In 1963 Edward Lorentz, a mathematician and meteorologist, 
discovered such a system almost by accident. Here it is.

f (x , y , z ) = 10 y − 10 x
g ( x , y , z ) = 28 x − xz − y
h( x , y , z ) = xy − 8/3z

In order to visualise this system, we must plot it in 3 dimensions.
First  x,  y and  z are  set  to  any suitable  starting  point;  δ is  set  to  a
conveniently  small  value  and  then  the  ball  is  set  rolling.  Sadly  the
images on these pages can only hint at the development of this amazing
attractor.

  
The Lorentz Attractor

86



The  images  above  show  two  views  of  the  Lorentz  attractor.  It
resembles two gramophone records which have stuck together and have
been partially peeled apart.  Wherever  you start  from the ball  rapidly
falls into one or other of the two whirlpools. Having rotated round and
round a few times it swaps over to the other whirlpool for a while, then
back again seemingly at random.

 That is not all. If you throw two balls into the mincer from two very
closely spaced points, for a while the two balls will stick together but
sooner or later one ball will decide to continue going round one leaf
while  the  other  swaps over  to  the  other.  In  other  words,  the  system
displays extreme sensitivity to initial conditions – the hallmark of chaos.

Here is another Lorentz-type attractor whose equations are:
f (x , y , z ) = yz
g ( x , y , z ) = x − y + 0.7 xz
h( x , y , z ) = 1 − xy

  

Both of these attractors are rotationally symmetric about the  z axis.
This is because the equations for dx and dy  contain only odd powers of
x and y and the equation for dz contains only even functions of x and y
This ensures that, when both x and y have their signs reversed, the signs
of dx and dy are also reversed but dz remains unaltered. Here is another
remarkable rotationally symmetric attractor which I call the sprinkler:
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f (x , y , z ) = −1.5 x + 1.6 y + 1.1 xz2

g ( x , y , z ) = −2 x − 0.7 y
h( x , y , z ) = 0.2 − x2

+ 0.4 y2

The first illustration below has the Z axis vertical while the second is
viewed from above; the symmetry is obvious from this vantage point.

  

It is fascinating to watch what happens to a point as it traces its way
through the  attractor;  first  it  climbs  slowly up the  Z  axis,  spiralling
round as it goes; then at the top it sprays out sideways, taking one or
other of the two major pathways back down towards the origin again.

(This  particular  attractor  is  not  very stable.  Its  basin  of  attraction
appears to be quite small and it is critically dependent on the values of
the coefficients. There may well be more stable versions of the same
kind of attractor.)

The  following  set  of  equations  obeys  the  rules  for  rotational
symmetry but does not generate a strange attractor; it generates a series
of nested toruses which depend on the initial start6ing point.

f (x , y , z ) = −2 y + xz
g ( x , y , z ) = −2 x
h( x , y , z ) = 0.1 − y2
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These are not fractals because each one is confined to (and in most
cases completely covers) a 2 dimensional surface.  Nevertheless,  they
are rather pretty.

Another famous attractor called the Rössler attractor was specifically
designed to be as simple as possible, having only one non-linear term in
it (but the xz term destroys the rotational symmetry).

f (x , y , z ) = − y − z
g ( x , y , z ) = x + 0.2 y
h( x , y , z ) = 0.2 + xz − 5.7 z

Essentially the f and g functions cause the point to spiral outwards in
the  xy plane but at a certain radius the  z coordinate begins to kick in,
twisting the circular disc into a kind of Möbius band which returns the
point to somewhere else in the disc.
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A  third  attractor  (known  as  the  double  scroll  attractor)  was
discovered by Leon Chua who devised a simple electronic circuit  to
demonstrate how it could be implemented in a real-world situation. In
the circuit below the double resistor/diode combination acts as the non-
linear  device which is  essential  in  any circuit  which exhibits  chaotic
behaviour.

Chua's circuit

The following formula (in which the  x3 term plays the role of the
non-linear resistor) shows the same behaviour:

f (x , y , z ) = x + y + x3

g ( x , y , z ) = (2 x − y + 3 z )/6
h( x , y , z ) = − y

and looks like this:
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The double scroll attractor has the property that all its terms are of
odd powers  of  x,  y and  z.  This  means  that  it  will  be  diametrically
symmetric about the origin.

Here  is  another  diametrically  symmetric  one  which  I  have
discovered:

f (x , y , z ) = −2 x + 2 z − 2 xyz
g ( x , y , z ) = 2 x − 2 z
h( x , y , z ) = y

  

No doubt many other interesting attractors remain to be discovered.

© J Oliver Linton

Carr Bank; February 2019
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Appendix
¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Hausdorf dimension

The  Hausdorf  dimension  of  a  self-similar  fractal  is  calculated  as
follows.

If it takes  n copies of the fractal to make it  p times larger, the the
Hausdorf Dimension of the fractal H is given by the equation:

pH
= n

For example, since it takes 8 copies of a cube to make a cube twice
as large, we have

2H
= 8

in which case H is obviously equal to 3 – the dimensions of a cube.

In the case of the Koch curve, it takes 4 copies of the curve to make
one 3 times larger so

3H
= 4

To calculate this we have to take the logarithm of both sides of the
equation. (It doesn't matter what the base of the logarithm is.) This gives
us

H log(3) = log (4)

H =
log (4)
log (3)

= 1.26

If the fractal is not self-similar the calculation is much more difficult;
indeed,  the concept  of  a  fractal  dimension is  not  really well  defined
under these circumstances. A rough estimate would be to measure the
length l of the nth iterate; then measure the length l' of the n+1th iterate
scaled to approximately the same size. The difficulty here, of course, is
defining what is meant by 'approximately the same size'.
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Most of the illustrations in this book were generated using

programs written by the author, many of which are

available on his website: www.jolinton.co.uk.
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