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The Logistic Equation
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

In  1976  Robert  M.  May,  a  biologist  from  Princeton  University
published a paper in Nature titled “Simple mathematical models with
very  complicated  dynamics”  in  which  he  analysed  the  following
innocuous-looking equation:

f 1
(A , x) = Ax(1 − x) (1)

The idea  is  this.  A is  a  constant  in  the  range 0  –  4  while  x is  a
variable. You start by putting x equal to some initial value  x0 and then
calculate  x1 = f1(A, x0); then you do the same with x1 calculating x2,  x3

etc. etc. For some values of A, x homes in on a stable value more or less
quickly but for other values of A x skips about apparently at random.

The behaviour can be illustrated by the famous bifurcation diagram
shown opposite  which  plots  many values  of  x (on  the  vertical  axis)
against A (on the horizontal axis. 

Several questions immediately present themselves:

1. What is the shape of the stable region between 1 and 3?
2. Why does the graph split at a = 3?
3. Why does the graph split again at approximately a = 3.45?
4. Why do both branches split at exactly the same point?
5. What causes the prominent gaps in the chaotic region?
6. What are the equations of the boundary lines which border the

chaotic region?
7. What causes the shadowy lines which cross the chaotic region?
8. What causes the chaos anyway and is it really random?
9. Do other functions produce other maps?
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Other Functions
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Lets deal with the last question straight away.

Opposite are the graphs several functions together with the chaos 
maps which they produce when iterated.

Graph A is the logistic equation (1) but with A values from -2 to 4. 
The region with negative values of A is a distorted version of the 
positive map and is usually ignored.

Graph B is a cubic equation constrained within the same x limits of 0
and 1. Unlike the logistic equation, it is symmetrical about the point 
(0.5, 0.5) and its chaos map reflects this symmetry. It shows all the main
features of the Logistic Map but, surprisingly, it appears to be missing 
one half of the second bifurcation (at A = 3). (This is due to the fact that 
it has two stationary values rather than just one.)

Graph C is the function

f 1
(A , x) = x2

+ A

and is the same one as the one used to generate the Mandelbrot map. It
produces a map which is essentially the same as the Logistic Equation
except that it is upside down.

Graph D is called the tent function and consists of two straight lines
with gradient A/2 and -A/2. Owing to the fact that it is not differentiable
at the apex, it does not show the classic bifurcation – basically all the
period doublings happen simultaneously. In addition, there are no bands
of  stability.  Even  so,  it  shows several  features  in  common with  the
Logistic Equation.

Essentially, whatever function you choose will do – provided it has at
least one maximum or minimum. Traditionally the logistic equation has
been the one subject to most study and we shall go along with that.
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Attractors and Repellors
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

In order to explain how what is going on, lets start with a slightly 
simpler system: Think of a number x. Halve it and add 1. Repeat over 
and over again. What happens? You will find that whatever number you
started with, you will end up getting closer and closer to x = 2. This is 
an example of what I call a progressive attractor.

Now try the function  double x and subtract 2. What happens now?
Quite the opposite! Whatever number you start with (except x = 2) you
end up at plus or minus infinity! Here x = 2 is a progressive repellor.

Why is there such a big difference between the two functions?

The crucial difference is that in the first case, the slope of the line
(y = x/2 + 1) is less than 45º  while in the second case (y = 2x - 2) it is
greater than 45º . This is shown in the first two graphs on the opposite
page. (The 45º line through the origin serves as a means of transferring
the output of one calculation into the input of the next.)

Lets try some negative gradients – i.e. lines which slope down.

The pattern is clear. If the gradient is shallower than 45º, the point is
still  an  attractor but instead of  progressively homing in on the stable
point, it cycles towards it. If the gradient is steeper than 45º the point is
a cyclic repellor. This is illustrated in the second two graphs.

Something special happens when the gradient of the graph is zero;
every initial starting point homes in on the stable value instantly.
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The Stable Region
1  <  A  <  3

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Now lets return to the logistic equation. The upper diagram shows
what happens when A = 1.8. A small starting point zigzags its way up to
the point where the function line crosses the 45° line. This is the place
where  f1(x) =  x and this is the stable point for this value of  A. We can
easily calculate its value as follows:

Ax(1 − x) = x
Ax − Ax2

= x
x = 0    or   x = 1 − 1/ A

(2)

There are two answers for x because the function crosses the 45° line
in two places. At x = 0, the gradient of the function is greater than 1 and
this point is a  progressive repellor; at the second point the gradient is
less than 1. This point is a progressive attractor and all starting points in
the range 0 – 1 will end up there.

The lower diagram opposite shows what happens when A = 2.8. The
gradient  at  the  place  where  the  curve  crosses  the   45°  line  is  now
negative but its magnitude is still less than 1 so it is still an attractor of
the cyclic sort.
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The First Bifurcation 
3  <=  A  <  3.45

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

At the point where A > 3, something very strange happens; instead of
settling down to a single stable value,  x oscillates between two values.
You can see why.  x tries to home in on the point where the function
crosses the 45° line but when it gets there it finds that the (magnitude of
the) gradient of the function is now greater than 1 and the point turns
out to be a cyclic repellor. Fortunately, though, because of the curve on
the function, x is able to find a pair of points where average gradient1 is
less than 1 and it is stabilises on these instead.

The point where the bifurcation starts can be calculated by finding
the  equation  of  the  gradient  of  the  function  (obtained  by
differentiation) , putting x = 1 – 1/A and equating this to –1.

grad = A(1 − 2 x) = A(1 − 2(1 − 1 / A)) = −1
A = 3

(3)

If x undergoes a cycle of period 2 it is because two iterations of x get
us back to where we started. i.e.

f 2
(A , x) = f 1

( A , f 1
( A , x)) = x (4)

Now what does f2(A, x) look like? The equation looks pretty horrid:

f 2
(A , x) = A(Ax (1 − x))(1 − Ax(1 − x))

= −A3 x4
+ 2 A3 x3

− A2
(A + 1)x2

+ A2 x
(5)

On the cobweb diagram it looks like a twin humped camel which
crosses the 45° line in three places (not counting the origin). Two of
these points are attractors while the central one is a repellor.

Higher order f lines have more and more humps.

1 The average appropriate here is the geometric mean √G1G2 (see page 38)
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Lines Of Instability 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Within the region 1 < A < 3, there is always a starting value of x 
which is immediately stable, this value being x = 1 – 1/A (equation (2)). 
Other starting values of x home in on this value more or less quickly.

When we move into the region where the map has split into two, 
between A = 3 and A = 3.45, this starting value becomes unstable 
because the magnitude of the gradient of f1(A, x) (equation (1)) becomes
greater then 1. Like a playing card balanced on its edge, the slightest 
deviation from the exact value will cause it to cycle further and further 
away from the line of instability.

Likewise, in the region 3.45 < A < 3.5, there are two values inside the
forks which are also unstable. These lines of instability are shown in the
illustration opposite in red.

One interesting thing about these lines is that they pass right through 
another point of interest – the point where the regions of chaos overlap. 
We shall return to this point later.
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The Second Bifurcation 
A  =  1 + √6  =  3.449489743...

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

The actual values of the two points through which x oscillates during
the  first  bifurcation  period  can  be  calculated  by  putting  f2(A, x)  –
equation (5) – equal to x and solving the resulting quartic equation for x
in terms of  A.  This is not quite so difficult  as it appears because we
already know two of  the  solutions  (0  and  1  –  1/A)2.  The  other  two
solutions are:

x =
A + 1 ±√(A + 1)(A − 3)

2 A
(6)

The second bifurcation occurs when the gradient of the second order
function reaches unity at the two attractors. Calculating exactly where
this point is is not easy because the second order function (5) is already
pretty complicated and the value of x which must be substituted into it is
the one given in equation (6). Wikipedia informs me that the solution is
1 + √6 =   3.449489743...

The  lower  graph  shows  what  happens  just  beyond  the  third
bifurcation  point  (A =3.527...)  where the  stable  values  split  into  8.
Increasing A further causes more and more rapid bifurcations until when
A = 3.56995... (the Feigenbaum point, also known as the accumulation
point of the first period doubling sequence) the chaotic region begins.

2 Equation 5 becomes A3 x4 − 2 A3 x3 + A2(A + 1) x2 −(A + 1)( A− 1)x = 0

which factorizes into x (Ax −(A − 1))(A2 x 2 − A(A + 1)x +(A + 1)) = 0
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The Gradient Theorem
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Now why do both branches bifurcate simultaneously? And why do
they go on bifurcating simultaneously throughout the period doubling
episode?  The answer  must  be  that  the  gradients  of  the  higher  order
curves  at  the  several  attractors  must  be  identical.  There  is  a  deep
theorem here because regardless of the function used bifurcation always
occurs at the same point however many branches there are.

We see that  when  A = 3.43,  the map has  split  into  two branches
which oscillate between two values x0 and x1. Also shown on the graph
is the function f 2(x) at this value of A. We are interested in proving that
the gradient of this curve is the same at these two values. 

Using the chain rule for differentiating a function of a function we
obtain:

df 2
(x)

dx
=

df 2
(x)

df 1
(x)

×
df 1

(x)

dx

Now df 1
(x)

dx
 is simply the gradient of f 1 at the initial point x = x0. Let

us call this G1(x0).

Also, since f2(x) is the iterate of f1(x), df 2
(x)

df 1
(x)

 is the gradient of the f 1

curve at the first iterate of x0: G1(x1). i.e. 

G2
(x 0) = G1

(x1) × G1
(x0)

What this is saying is that on the diagram opposite, the gradient of
the second order curve at A is equal to the product of the gradients of
the first order curve at P and Q.

What about the gradient at B? This will be equal to. 

G2
(x1) = G1

(x2) × G1
(x1)

But of course, for the second order curve x2 = x0 so the gradient at B
is equal to the gradient at A.
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The Gradient Theorem (2)
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

We can take this idea further.

df 3
(x)

dx
=

df 3
(x)

df 2
(x)

×
df 2

(x)

dx
=

df 3
(x)

df 2
(x)

×
df 2

( x)

df 1
(x)

×
df 1

(x)

dx

or G3
(x0) = G1

(x2) × G1
(x1) × G1

(x0)

G4
(x0) = G1

(x3) × G1
(x2) × G1

(x1) × G1
(x0)

and so on.

When we apply this result to the fourth order f curve, we can see that
the gradients at all the four points A, B, C and D are equal because they
are all equal to the product of the gradients at P, Q, R and S.

The illustrations opposite below show what the first four f functions 
look like for a fixed value of A.

In each case we see that the each f curve has zero gradient (i.e. a 
maximum or a minimum) where either the previous curve has zero 
gradient or where the previous curve is equal to 0.5. But what is so 
special about f n(x) = 0.5?

The answer is, of course, that this is precisely the place where the 
gradient of the f1 curve is zero.

We can summarise all this as follows:

1.   If the gradient of the f n curve is zero at x, then the gradient of the
f n+1 curve will also be zero at x.

2.  The gradient of the f n+1 curve will also be zero at the points where
f n(x) = 0.5 because the f1 curve has zero gradient at x = 0.5. 

3. All the f curves have zero gradient at x = 0.5.
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The Critical Value 
x0  =  0.5

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

The third consequence is particularly important – All the f curves 
have zero gradient at x = 0.5. This point is therefore special and is 
called the critical point xc. It is the point where the f1 curve has zero 
gradient and we can calculate xc by differentiating the logistic equation 
and equating to zero:

f = A x(1 − x) = Ax − A x 2

df
dx

= A − 2 A x = 0

xc = 0.5

If you start with x0 = xc then x will follow a certain set of specific 
values called the critical orbit of the function. From now on, we shall 
always use  x0 = xc = 0.5.

Another reason for doing this is that if there is a stable cycle nearby, 
starting at the critical point will always find it. The upper illustration 
shows the critical value homing in slowly on a single stable point with A
slightly less than 3. The lower illustration shows it finding a second 
order cycle.
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Superstable Points
  β0,  β1,  β2, etc.

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

According to a theorem by Pierre Fatou, within every stable region 
(e.g.1 A < 3) there will always be a point where the critical value of x is 
a member of the cycle – i.e. a point where xc does not need to  'home in' 
on the stable cycle because it is already there.

In the case of the stable region between 1 and 3 we can calculate this 
value as follows:

f 1
(A , 0.5) = A × 0.5(1 − 0.5) = A /4 = 0.5

A = β0 = 2

This value of A is called a superstable point and I shall call it β0.

Between a = 3 and a = 3.45 (i.e. the region of the first bifurcation) 
we have:

f 2
(A ,0.5) = A × A/4 (1 − A /4) = 0.5

A2
(4 − A) = 8

A3 − 4 A2 + 8 = 0

Although this is a cubic equation, we already know one of the 
answers – A = 2 so we can factorize it:

(A − 2)( A2
− 2A − 4) = 0

so the solutions are:  A = 2, 1 + √5 and 1 - √5. The answer we are 
looking for is β1  = 1 + √5 = 3.2361...

Superstable points β2, β3, etc. inside the period 4, 8 and subsequent
regions  can be found by similar  methods but  the algebra gets pretty
complicated. You can, however, see where the superstable points are on
the chaos map because they are the points where one of the lines of
stability crosses the critical value of x (= 0.5).

The lower illustrations show how the critical value  xc = 0.5 always
homes straight in on the correct value when A is one of the superstable
values  because  at  these  values,  the  nth order  graph  passes  exactly
through the point (0.5, 0.5).
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The Onset Of Chaos 
 A = 3.56995... 

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

The process of bifurcation proceeds faster and faster as A increases 
and the interval between each successive bifurcation gets smaller and 
smaller in approximate geometric progression whose ratio approaches 
4.6992... a number known as Feigenbaum's constant Fc

3
. This process 

reaches its limit when A = β∞ = 3.56995...

Just below this number, x cycles through 2n exact values where n is a 
finite number. Just beyond the Feigenbaum point, all these values have 
smeared out into a continuum which gradually merge into one another 
and eventually, when A is nearly equal to 4, spread right across the range
from 0 to 1.

The upper illustration opposite shows the region between 3.4 and 3.6.
The lower illustration shows the marked region. Only the first few 
bifurcations can be seen clearly even when magnified.

3 Technically Fc is equal to the limit of 
βn+ 1 − βn

βn+2 − βn+1

as n tends to infinity.
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Islands Of Stability
α, β and γ points

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

One of the most remarkable features inside the chaotic region is the 
appearance of clear bands the most prominent of which occurs  where 
all the boundary lines touch in three places. This is illustrated opposite 
and it will be immediately obvious that it represents a range of values of
A which has a period of 3, doubling to 6, 12, 24 etc. To the right of this 
band a much thinner band can be seen with a period of 5 and another on 
the left which has a period of 7. What causes these bands and how can 
we find other bands with specified periods?

As we saw on page 22, the superstable point β0 inside an island of 
stability of period p can be found by solving the equation 
f p(A, 0.5) = 0.5 but this is impossible to do algebraically in all but the 
simplest cases. Instead you can use a computer program such as Chaos 
Explorer to discover those values of A when the pth order graph passes 
though the point (0.5, 0.5) The lower illustration shows the third order 
cobweb diagram with a value of A = 3.8325 which is the centre of this 
basin of attraction β1. 

A vital point to notice here is that, as was proved on page 18, the 
gradient of the f 1 curve at this point is always zero. It follows that at 
nearby values of A, the gradient will always have a magnitude less than 
1 and that the stable region will always have finite width.

The point where the stable region actually starts is the slightly 
smaller value of A when the central loop just touches the 45° line and 
has the approximate value of 3.82840. I call this the α point of the 
region. The point where the stable region ends is the γ point and is the 
limit of βn as n tends to infinity. The α and β points are the roots of a 
rational polynomial and are therefore algebraic numbers. The γ point, 
however, is not and is probably always transcendental.

 Since the α and β points are algebraic it follows that the number of 
basins of attraction, though infinite, is countable.
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Fractals In Chaos
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

At a glance you might think that the top illustration opposite is just 
another picture of the chaos map. In fact it is the tiny region at the very 
top of the order 4 cycle and covers values of A from 3.54 to 3.58. The 
inset shows the equivalent region magnified again. It is clear that the 
map displays the self-similarity which is the hallmark of a fractal.

The lower illustration shows the region in the centre of the chaos 
diagram at A = 3.8325.  Once again we see the characteristic pitchfork 
doubling. In fact you can find this pattern repeated over and over again 
within the chaotic region, wherever there are 'islands of stability'.

What is the reason for this fractal structure? On page 22 we saw that 
the first superstable point β0 occurs because the f1(A, x) line passes 
through the point where x = xc = 0.5. Here the gradient of the line is 
always zero. Now as A is increased, the gradient of the line where it 
crosses the 45° line increases and at the first bifurcation point it equals 1
(see page 10). We have also seen on page 18 that the second order f lines
have a similar shape (only with more humps) and that they do exactly 
the same thing as A is increased. It is not surprising then that every 
superstable point in the middle of a basin of attraction bifurcates in 
exactly the same way that the first one does.
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Boundary Lines
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

The next question to be addressed concerns the boundaries of the
chaotic region in the vertical direction and what causes the differences
in density of the points within it. To answer these questions it is useful
to emphasise the first 4 iterations of x (starting with the critical value of
xc = 0.5). This is shown in the upper graph opposite. The topmost line is
f1(A,  xc) and is straight; the other line is  f2(A,  xc) We shall call these
functions F1 and F2 from now on. (Note that Fn is a function of A only;
fn(A,  x) is a function of both  A and  x.). Here is a list of the first few
boundary functions:

F1
= A /4

F2
= A2

(4 − A)/16
F3

= A3
(4 − A)(16 − 4 A2

+ A3
)/256

F4
= A4

(4 − A)( a polynomial of order 10 )/65536

It is immediately obvious that the equation becomes extremely 
complicated after even a modest number of iterations. (In fact, the order 
of the resulting polynomial is equal to 2n – 1 where n is the number of 
iterations.) The lower illustration shows F5 and F6. F5 has one minimum 
and one maximum in the region A > 3.6 while F6 has two minima and 
three maxima in this region. The first major crossing point is where the 
lines F3 and F4 cross. This is the first Misiurewicz point and will be 
discussed later (see page 36). In fact all the boundary lines pass through 
this point.

Since the logistic function is a maximum at the critical point, it is 
clearly not possible for x to exceed F1, nor is it possible for it to go 
below F2. This is why these lines form the boundaries within which x is 
constrained. The other lines appear as denser regions in the overall map 
because, on one side certain higher order lines are 'turned around' at this
point just as, for example, the F6 line is 'turned around' whenever it 
approaches the F3 line in the middle of the period 3 basin.
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Finding β Points
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

On page 22 it was stated that islands of stability occur when one of 
the functions  f p(A, xc ) passes through the point (0.5, 0.5). We can now 
express this idea more simply as Fp = 0.5. In other words, basins of 
attraction occur whenever one of the boundary lines crosses the x = 0.5 
line. This is shown in the upper illustration opposite. The F3 line crosses 
the red line right in the middle of the order 3 basin of attraction.

We can also use subsequent boundary lines to find all the β points 
within a basin of attraction. The magnified illustration at the bottom 
shows the F3, F6 and F12 lines passing through the central 'bridge' of the 
basin. The F3 line crosses the centre line once only but the F6 and F12 
lines cross it twice and thrice respectively. These crossing points are β1 
and β2.

To find a basin of attraction of any period p, all you have to do is 
look at the line Fp and see where it crosses the centre line. You can 
immediately see that there will be only one basin of order 3.
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The F-Line Theorem
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Now it may seem remarkable that, with all those wiggles, all higher 
order F lines can pass through the order 3 basin of attraction in just three
places. How do they do it?

Suppose that the boundary line Fp crosses the centre line at A = β0
p. 

What this is saying is that starting with x = 0.5, after p iterations we 
return to 0.5. Now if we iterate for a further p iterations we will cycle 
through exactly the same numbers. It follows that if Fp = 0.5, then 
Fp+n = Fn for all n. and that all the higher order lines must pass through 
the same p points.

But that is not all. A detailed look at the region where F3 crosses the 
centre line reveals that not only do lines F6, F9 and F12 pass through the 
same point, they also have the same gradient at this point too. In fact it 
is  general rule that whenever  Fp = 0.5, then the gradient of Fn+p will be 
equal to the gradient of Fn for all n as well. (You can see this at the point
β1 where the F6 line crosses the centre line. Here F3 has the same 
gradient as F9 and F6 has the same gradient as F12.) In fact, I would 
venture to suggest that at A = β0

p the kth differential of the line Fkp  is 
equal to the kth differential of the line Fp but I do not have a proof of this.
The reason for this is simple. Since all the values of A near β0 are stable, 
the higher the order of the line Fkp the closer it will lie to the line Fp. 

The upshot of all this is that the higher order lines cannot just wiggle 
where they please. The lower illustration shows the F10 line (in red) at 
the top of the period 3 island. Because of the F-line theorem, it has to 
have the same gradient as F1and F4 (and F7) at the β0 point and the same 
gradient as the F4 line at the β1 point. This effectively constrains it to lie 
between the boundary lines F1 and F4 across the whole island of 
stability. It also means that within an island of stability of period p, all 
the F lines of higher order will exbibit an effective maximum or 
minimum. The converse is also true. If you see a place where Fn has a 
maximum or a minimum, there must be an island there of period less 
than n.
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Pre-Periodic Points
A  =   3.67857351042832...

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

In addition to the 'islands of stability' discussed above, there are other
cyclic points called Misiurewicz points. Instead of homing in on a stable
cycle these values of A cause an initial value of x = xc to bounce around 
for a while (a phase called the pre-period) and then enter a periodic 
cycle. If after a pre-period of n iterations the point enters a cycle of 
period p then this value of A is designated M(n, p). What this means is 
that the (n + p)th iterate of the critical point must equal the nth iterate i.e.
F (n + p )

= F n .

Now  it  was  noted  on  page  22 that  the  major  crossing  point
(illustrated  opposite)  is  the  place  where   lines  F3 and  F4 meet.  This
means that this is, in fact,  M(3,1) and it has the approximate value of
3.67857351042832... The cobweb diagram shows how x jumps from 0.5
to 0.92, then to 0.27 from which point it happens to hit the place (0.728)
where the parabola crosses the 45° line thus entering a cycle of period 1.
The problem is – this point is a repellor (because the gradient of the
parabola at this point is greater than 1) so if A is not exactly equal to the
right number, x will gradually diverge away from its cyclic value. This
is indicated by the horizontal lines on the right which show the next
dozen or so iterations.

We have seen that, as n increases, the boundary line Fn acquires more
and more wiggles and the number of places where it  can potentially
cross one of the lower F lines increases enormously. There are therefore
an awful lot  of Misiurewicz points so it is not inconceivable that  all
values of A lead eventually to a periodic pattern. But do they? We shall
return to this question again and again.

36



37



Initial Sensitivity
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

One of the characteristics of chaos is what is called its 'sensitivity to 
initial conditions'. What this means is that, if A is a non-periodic 
(chaotic) value, then if you iterate two very slightly different values of 
x, the difference will increase exponentially. This behaviour is 
illustrated in the diagram opposite. Two very similar initial values 
(0.100 and 0.101) are iterated for 4 different values of A. When A = 2 
the function homes in on a single stable value. With A = 3.2 the function
bifurcates. At A = 3.5 the function has bifurcated again but the two 
starting values remain in step. By the time we get to A = 3.7, though, 
differences appear after 4 or 5 iterations which soon magnify until there 
is no apparent correlation between the two graphs at all.

We can get a handle on the speed of this divergence by noting that 
when two different values of x separated by a small quantity δx are 
iterated, the difference in the values after iteration  δy will be equal to 
G(x)δx where G(x) is the gradient of the function at x. After n iterations 
the difference will be approximately

δ y ≈ G (x0) .G( x1) .G (x2)...G( xn) δ x

(provided that δy remains small). Alternatively we can say that δy will
increase  exponentially,  multiplying  by  a  factor  G at  every  iteration
where  G is  the  average  gradient (technically  the  geometric  mean
gradient4) which x encounters. i.e.

δ y ≈ Gn
δ x

where G =
n√G (x0) .G( x1) .G (x2)...G( xn)

We have already seen that when the average gradient is less than 1,
the function is stable; but if the average gradient is greater than 1 the
system will exhibit extreme sensitivity to its initial conditions.

4 Since we are not interested in the sign of the difference, we use the absolute value 
of the gradient.
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Lyapunov Exponent
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

The average (or geometric mean) gradient G of an orbit is a measure 
of its stability. Since the gradients along the way must all be multiplied 
together, it is more convenient to add their logarithms and take the 
(regular) mean of these. The result is called the Lyapunov exponent of 
that point.5

The upper graph opposite shows the Lyapunov exponent for the 
logistic function between 2 and 4 averaged over 100 iterations after the 
first 1000. Negative values indicate values of A which converge on a 
stable value (superstable points have a Lyapunov exponent of –∞ ). 
Where the graph is zero, this is a point of neutral stability e.g. a place 
where the chaos diagram bifurcates. Where the graph is positive, the 
differences increase exponentially which indicates that these points are 
unstable. Such points include the Misiurewicz points and other totally 
chaotic points (if they exist).

The lower graph shows the expanded region close to the period 3 
island. In addition to the large island of stability you can see that several
more spikes have appeared which dip below the axis and which 
represent much smaller islands of stability. In fact, however much you 
magnify the graph, more and more negative spikes appear and the only 
reason that we don't see them is that they are too thin and fall between 
the calculated values.

In fact, even those points which remain above the axis cannot be 
guaranteed to be aperiodic because they might be Misiurewicz points

So the question still remains – are there any genuinely chaotic points 
at all?

5 Strictly speaking, it is not possible to talk about the Lyapunov exponent of a single 
point because what is being measured is the rate at which two nearby points 
diverge. If you use the algorithm to work out the Lyapunov exponent for a 
Misiurewicz point you will get a false answer because the gradients will repeat 
over and over again. In practice this does not matter because Misiurewicz points 
are relatively rare and the computer will almost always calculate the exponent of a 
nearby (aperiodic) point. 
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Period And Pre-Period
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Consider the points where Fn crosses Fm (where m >n). These values
of A will be the solutions to the equation Fm = Fn and since the equation
Fm has order 2m-1 there will, in general, be 2m-1 solutions. All of these
solutions  will  have  a  pre-period  of  n and  an eventual  periodicity  of
m – n because, having reached a certain value x after n iterations, it must
return to x after a further m – n iterations.

Take the case of n = 3 and m = 6 illustrated opposite. There will be
63 solutions but many of them are either degenerate or imaginary. Some
of the real solutions are accounted for by the solution A = 0. Many more
occur at A = 2 where both lines touch at the centre of the order 1 basin
of  attraction.  We  expect  all  the  real  solutions  to  have  an  eventual
periodicity of 3.

The lines cross at the first Misiurewicz point  M(3, 1) which has a
pre-period of 3 and a periodicity of 1. (Any point with a periodicity of 1
also has a periodicity of 3.) At A = 3.83 the lines just touch. This is the
centre of the basin of attraction of period 3 and can be seen more clearly
in  the  second  illustration.  They  cross  twice  more  at  two  further
Misiurewicz points, both of them designated M(3, 3).

We can draw some general conclusions straight away. Where there
are degenerate  solutions  (i.e.  where the F lines  touch),  these are  the
centres  of  basins  of attraction;  where there are  unique solutions (i.e.
where the lines cross) there are Misiurewicz points.

Just as there are a countable number of basins of attraction (see page
24) there must also be a countable number of Misiurewicz points.
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Misiurewicz Points
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Below is a list of Misiurewicz points generated by the boundary lines
3 through 7.

A M point Crossings

3.59257 M(5, 2) 5×7, 6×8

3.67850z M(3, 1) 3×4×5×6×7

3.76489 M(4, 2) 3×5, 4×6

3.78 M(3, 4) 3×7

3.79113 M(6, 1) 6×7

3.87655 M(6, 1) 6×7

3.89 M(3, 2) 3×5

3.92775 M(4,1) 4×5×6×7

3.94282 M(5, 2) 5×7

3.95 M(3, 3) 3×6, 4×7

3.97 M(3, 3) 3×6, 4×7

3.97459 M(4,2) 4×6, 5×7

3.98257 M(5, 1) 5×6×7

3.98734 M(4,3) 4×7

3.98910 M(3,4)z 3×7

3.99125 M(3,4)z 3×7

3.99228 M(4,3) 4×7

3.99378 M(5, 2) 5×7

3.99570 M(6, 1) 6×7

The points  A  = 0  and  A =  4 are  Misiurewicz  points  M(0, 1)  and
M(2, 1)

The designation M(n, p) is not unique. There may be more than one
Misiurewicz points with the same pre-period and period. For example,
there are two M(3, 3) and three M(6, 1) in the list.
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Any   Misiurewicz  point  with  designation  M(n,  p)  can  also  be
designated  M(n + i, jp) where i and j are integers. For example M(3, 4)
could  equally  well  be  called  M(5,  12)  because  once  the  point  has
completed its genuine pre-period, all subsequent points are periodic; and
anything with a period of 4 also has a period of any multiple of 4. The
consequence  of  this  is  that,  just  knowing  the  designation  does  not
necessarily tell you the pre-period and the period unless you also know
that  the  designation  has  been  reduced  to  its  lowest  terms.  Nor  is  it
possible to reduce a designation without further information.

If you know the pre-period n and the period p, you can deduce that
the lines Fn and Fn+p cross at that point. You can also deduce that the
lines   Fn+i and  Fn+p+i also  cross  at  that  point  (where  i  <  p)  but  at  a
different value of x. So at M(3, 3), line F3 crosses F6, line F4 crosses F7,
and line F5 crosses F8 in three different places.

The following illustration shows the region between 3.94 and 3.98.
The two Misiurewicz points  M(3,  3) are indicated in red.  All higher
order F lines must pass through these three crossing points as well.
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Crisis Points
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

On page 12 it was noted that the point where F3 crosses F4 (M(3, 1))
is  associated  with  the  first  bifurcation  point;  likewise  the  second
bifurcation point is associated with another Misiurewicz point – M(5, 2)
where F5 crosses F7 and F6 crosses F8. (It is no accident that the former
has period 1 while the latter period 2.)

In fact there is a whole sequence of Misiurewicz points which mirror
the  bifurcation  points  in  reverse,  as  it  were.  The  next  one  in  the
sequence will be the crossing point of the F lines 9 & 13, 10 & 14, 11 &
15, 12 & 16 etc.  etc.  In fact,  every basin of attraction ends with an
infinite sequence of period doublings, each of which has its own unique
associated Misiurewicz point. (This would appear to suggest that there
are infinitely more Misiurewicz points than basins of attraction.  This
would be a mistake though as ∞ × ∞ is still ∞.)

But not all Misiurewicz points are associated with a period doubling
point.  The  illustration  opposite  (top)  shows  the  period  3  band  and
boundary  lines  F3,  F4,  F5 and  F6.  The  principal  Misiurewicz  point
associated with the period doubling sequence which ends this region of
stability is clearly shown where F3 crosses F5 (lower) and F4 crosses F6

(upper). But unlike the case of the main period doubling sequence, the
band of stability comes to an end long before this value is reached.

An enlargement of the central 'bridge' showing the boundary lines F6

and  F9 shows  why.  The  F9 line,  once  released  from the  constraints
imposed on it by the band of stability, shoots off and crosses the F6 line
and enters what was previously regarded as a 'forbidden' region. Higher
order lines do so with even more enthusiasm.

This point is known as a 'crisis' point. In general, the central 'bridge'
of an island of stability of period p will be bounded by the F lines p and
2p. The crisis point will be where 2p  F line is crossed by the 3p line.

(Note that the island of stability ends at the  γ or Feigenbaum point
which is well before the crisis point.)
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M-Points and Basins
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

We have seen that every Misiurewicz point is the crossing point of
two boundary lines (see page 42). We have also noted that the β points
(the centres of the basins of attraction) are places where all the groups
of boundary lines above a certain value have equal gradients (see page
34). It is important to prove that none of the Misiurewicz points can lie
inside a  basin of attraction.  Take,  for  example the period 5 basin of
attraction at A = 3.74. This is the point where F1 to F5 all have different
gradients and cross the region in different places but F6 just touches the
line F1. We can see straight away that the former lines form the 'bridges'
across  the  window and  that  this  is  the  reason  that  this  window has
period 5 but can we prove that this will always happen? Isn't it possible
that there might be a case where two of the lower order lines actually
cross inside the window?

On page 32 we showed that  whenever any boundary line Fn passes
through the critical point x = 0.5 there will be a basin of attraction there
of period n.

Now if two of the lower order F lines Fp and Fq were to cross or
touch at some other value of  x inside this basin, then it would have a
smaller period because p - q must be less than n.

For example, in the lower illustration opposite F10 shown in red just
touches the x = 0.5 line. This basin of attraction therefore has period 10.
We also note that the two boundary lines F3 and F8 touch inside this
basin which means that the basin also has period 8 – 3 = 5.

It is, of course, the period 5 basin. True period 10 basins will only be
found where the F10 line crosses rather than touches the  x = 0.5 line and
in these basins, none of the F lines 1 – 9 will cross. 
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 The M-Theorem
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

We now come to the most important theorem of them all. Not only is
it true that all Misiurewicz points lie outside the basins of attraction, it is
also the case that between any two Misiurewicz points there are always
an infinite  number of  basins  of  attraction and that  between any two
basins of attraction there are always an infinite number of Misiurewicz
points.

The reasons for this are pretty obvious. Consider the two basins of
attraction shown in the upper illustration opposite which have period 5
and 7 respectively. On page 34 we noted that every F line has to pass
through the same 5 or 7 bridges across these basins. In between they
must reorganise themselves to get in the right order and inevitably, some
will cross. Indeed the higher order lines (for example the line F11 shown
in  red)  will  cross  the  lower  order  line  many many times.  All  these
crossing points are, of course, Misiurewicz points.

The lower illustration shows the region between the two Misiurewicz
points  M(5,  7) (which has a period of 2) and  M(3,  6) (which has a
period of 3). The points in the periodic cycles are indicated with black
dots. Now it was pointed out on page 45 that all higher order lines must
pass through one or other of these points and in order to get from one
set of points to the next, many of these lines will cross the x = 0.5 line
many times. (For example the F10 line shown in red.) At all these points
there will be basins of attraction.
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Aperiodic Points
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

We have seen that every Misiurewicz point is the crossing point of
two of the F functions and is therefore the root of a polynomial of order
2(n+p) where  n is  the pre-period and  p the period.  We also know that
Misiurewicz points are  never found inside basins of attraction This is
because inside a basin of attraction the point xc homes in on the attractor
- it doesn't become periodic. (The exception is, of course, the attractor
itself which could be regarded as a Misiurewicz point with a pre-period
of  zero.)  So  in  spite  of  there  being  an  infinite  number  of  basins  of
attraction, each of finite size, there are still numbers left over.

Now we know that there are countless numbers (literally an 
uncountable number) of transcendental numbers which are not the root 
of any polynomial. π is a good example. So the point A = π is not a 
Misiurewicz point. It could, however be a point inside one of the basins 
of attraction. (It is, of course, inside the basin of attraction of period 2.) 
The trouble is, there is no general algorithm for determining whether a 
given value of A is inside one of the basins of attraction or not. In fact, 
since the basins of attraction all have finite width, any random number 
is far more likely to be in one of these basins than not so this leaves us 
in the following impossible position of suspecting that aperiodic points 
exist in uncountable numbers but not being able to name a single one of 
them precisely!

One potential candidate for an aperiodic point is the limiting value at 
which the initial period doubling sequence tends to infinity – the 
Feigenbaum points. Here A is approximately equal to 3.56995...

Another way to approach this point is to consider the sequence of 
principal Misiurewicz points discussed on page 46. The principal one is 
found where F3 crosses F4. The next most important one is found where 
F5 crosses F7 and F6 crosses F8. These are shown in the diagram 
opposite. The next one is at the crossing point of F12 and F16. It should be
clear that the limit we are seeking is one of the solutions to the equation 
Fa = Fb where a = 3×2n and b =  4×2n as n tends to ∞. This point could 
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be regarded as a Misiurewicz point whose pre-period is infinite.

Since every basin of attraction ends with a period doubling sequence,
this type of point is very numerous but they are none the less countable 
because, owing to the fact that the β point is algebraic (see page 26), 
there are a countable infinity of basins of attraction.

So the question of how many aperiodic points there are remains 
unresolved. Are all the transcendental numbers which are not 
Feigenbaum points inside basins of attraction? Or is there an 
uncountable infinity of such numbers outside the basins of attraction? I 
do not know.

53



The Mandebrot Axis
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

The Mandelbrot map is generated by iterating the function 
z'  =  z2 + C. where z and C are complex numbers starting from the 
critical point zc = 0. Now if C is a real number i.e. its imaginary 
component is zero) then z will also be just a real number and the whole 
process reduces to iterating the function x'  =  x2  + C.

This function is an inverted parabola and its chaos map is shown 
opposite. It is immediately apparent that it shows exactly the same 
characteristics as the Logistic map but in reverse and the relevant range 
is 0.25 down to -2.

There is, in fact a simple relation between the Mandelbrot constant C
and the logistic constant A so if you know where a certain feature like a 
bifurcation or a basin of attraction occurs in one map, you can find it in 
the other. The relation is:

A = 1 + √1 − 4C  or C = A(2 − A)/4

The diagram below shows this map superimposed on the Mandelbrot
map and the relation between them is immediately apparent.

The first bifurcation occurs at the place where lobe 2 meets the main
cardioid and the successive bifurcations at the junctions of lobes 2\2,
2\2\2, 2\2\2 etc. (For an explanation of the lobe labels, see my book on
the Mandelbrot Map.)

But the big revelation comes when you look at where the period 3
basin  occurs.  It  is  exactly  where  the  large  minibrot  occurs  on  the
antenna.  In  fact,  every  basin  of  attraction  in  the  logistic  map
corresponds to a minibrot in the Mandelbrot Map!
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Minibrots and Basins
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

We have noted that the α point of a basin of attraction is the root of a 
finite polynomial and is therefore an algebraic number. This means that 
there are a countable number of basins of attraction and a countable 
number of minibrots along the axis of the Mandelbrot map. In between 
these minibrots are the Misiurewicz points. These points (which I call 
synapses) can sometimes be recognised in the Mandelbrot Map because 
they are places where the filaments divide into multiple branches. For 
example, the filament which attaches itself to the lobe at the top of the 
map soon splits into 2. (This synapse is said to have order 3 because 3 
branches meet here.) The Misiurewicz points along the axis cannot be 
seen, though, because they just form part of a straight line. 
Nevertheless, the structure of minibrots and synapses along the axis is 
the same as along all the other filaments.

In order to study this structure we need to look at a filament where 
the synapses can be identified. The illustrations opposite show the 
filament attached to lobe 3\4. This means that its synapses will have 
orders 3 and 4. Starting at the tip of the lobe we travel along a straight 
section, passing minibrots and (invisible) order 2 synapses along the 
way until we come to a prominent order 4 synapse. Taking  the longest 
of the branches we trace a wiggly path through countless order 4 
synapses interspersed with minibrots until we come to the first order 3 
spiral synapse. After this, order 3 and order 4 synapses alternate – that is
to say, between any two order 3 synapses you can find an infinite 
number of order 4 synapses and vice versa.

And, of course, between any pair of synapses you can find an infinite
number of minibrots!
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How Many Minibrots?
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

The question which has stimulated my exploration of the logistic 
equation is this – how many minibrots and synapses are there on the 
axis of the Mandelbrot Map (or what is the same thing, how many 
basins of attraction and Misiurewicz points are there in the logistic 
map)?

In my book on the Mandelbrot Map I argued that there was an 
uncountable infinity of minibrots along the axis. The argument goes 
something like this: If there was only one lobe (say of order 4), there 
would be an infinite number of order 4 synapses along the filament. 
With two lobes of order 4 and 3, there will be ∞2 synapses (because 
there will be an infinite number of order 3 synapses between every order
4 synapse.) With n lobes stacked on each other the number of synapses 
will be   ∞n etc. Now we know that every filament is in fact attached to 
an infinite number of lobes (corresponding to the infinite series of 
bifurcations of the logistic map) so the total number of synapses along 
any filament will be  ∞∞  which is, of course, an uncountable number. 
This implies that there will be an uncountable number of minibrots too. 

 But on page 42 I have stated that, owing to the fact that the β point 
of every basin of attraction is an algebraic number, there will be a 
countable infinity of these and a countable infinity of Misiurewicz 
points.

As with many arguments, everything hinges on what you mean by 
the words you use. If you insist that a basin of attraction and a minibrot 
must have a finite extent – then there can only be a countable infinity of 
them. If, however, you let n tend to infinity, you admit the possibility 
that basins and minibrots can have zero width. And since the β point 
will be the solution to an equation of infinite order, β will  no longer be 
algebraic but transcendental.
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So all points can be put into one of four mutually exclusive 
categories

1. points which are inside a finite basin of attraction (or minibrot)

2. Feigenbaum points which are the limit of a period doubling 
sequence (or at the tip of a sequence of lobes)

3. Misiurewicz points with finite pre-period and finite period 
(synapses)

4. All the rest comprising all the zero width basins with infinite 
period, the Misiurewicz points with infinite pre-period and the 
truly aperiodic points (all of which are, of course, identical).

I have already hinted that I do not know whether any category 4 
points exist but I strongly suspect that they do – in uncountable 
numbers. I also strongly suspect that they will remain forever hidden 
and that, while it may be easy to prove that a certain well defined (i.e. 
computable) transcendental number (like π) is not a category 4 number, 
it will be impossible to prove that it is.

May I be so bold as to call this the 'Linton Conjecture'?
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Julia Graphs (1)
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

The pitchfork diagram shows us the behaviour of the critical orbit for
each value of the parameter A. It is the Logistic Equations equivalent of 
the Mandelbrot Map which summarises the behaviour of the critical 
point for each value of C in the complex plane.

It is also of great interest to know what happens to the orbits of other 
starting points at different values of A. I call these graphs Julia graphs 
by analogy with the more familiar Julia maps in the complex plane. Six 
of these graphs are shown opposite and their positions in the chaos map 
are shown below:

At A = 2 all points home in on a cycle of period 2 and at A = 3.5, the
points home in on a cycle of period 4.

At A = 3.575 the first chaotic bands appear.

At A = 3.6292 there is a band of stability of period 6. Note that not all
initial starting points find the stable cycle but the critical point  x = 0.5
always does. The same is true of the last graph at  A = 3.834 which is
inside the period 3 band of stability.

At A = 3.75 chaos appears to spread over the whole region but look
very carefully and you may be able to see thin vertical white lines which
represent individual values which remain stable for while.
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Julia Graphs (2)
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

In order to discover exactly what is happening at values like A = 3.75
where chaos appears to reign, it is instructive to pick out certain pairs of
iterations. The first of the graphs on the opposite page shows the first 
and second order curves f1(x) and f2(x) which we met on page 10. It is 
easy to show that the two places where they cross (apart from 0 and 1, 
of course) are

1
A

   and   1−A
A

If we add the third order curve, we see that this curve also passes 
through these two points but adds another 4 crossing points with the 
first order curve. It also crosses the second order curve in two more 
different places.

Now, whenever the nth order curve crosses the mth order curve (n > m)
then this orbit will enter a periodic cycle of order p = n – m. This is the 
exact analogy of the Misiurewicz points we met earlier. I do not know if
they have been dignified with a special name so I will simply call them 
periodic points. We can immediately see that for any given value of A 
(in the chaotic region) there will a huge number of periodic points – but,
of course, between then there will be a uncountable number of chaotic 
ones.

In fact these periodic points exist even outside the chaotic region. 
The third graph opposite shows the Julia graph of A = 3.2 with the 
second and fifth order iterations highlighted. At the point marked with 
the arrow, the fifth iteration is equal to the second and so this point will 
have a period of 3. But A = 3.2 is inside the period 2 band of stability so 
how can there be points with period 3?

The answer is that these periodic points are very rare and unstable; 
the slightest deviation will cause the orbit to home in on the stable 
cycle. This is why, if you want to find the stable cycles, it is important 
always to start from the critical point. If you start from a random point 
you may end up in a completely different cycle.
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The Ultimate Chaos
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

In order to find a period point with a given period p you must solve 
the equation f p(x) = x. Alternatively you can simply see see where the 
pth order iteration crosses the 0th order line. (The 0th order line is a 45° 
line from (0, 0) to (1, 1)) It follows immediately that for every value of 
A (>0) there will be at least 1 periodic point (not including x = 0) for 
every value of p. As A is increased, the number of crossing points (and 
therefore the number of periodic points) will increase dramatically and 
will reach a maximum at A = 4.

The Julia graph for a = 4 is shown on the opposite page and 
illustrates 800 iterations of each initial value. It can be seen to be 
crossed with several vertical white lines. To be honest, these are a bit of 
an artefact caused by the fact that the computers resolution is finite and 
some starting points will return to the exact same value after a while 
simply because the computer cannot calculate the difference. On the 
other hand, we know that there really are an infinite number of periodic 
points in the graph so the picture is not misleading – just wrong!

Now for virtually all values of A the only way to find out where a 
given starting point will end up after n iterations is to calculate each 
iteration; and since you can only do that to a finite resolution, it is rarely
possible to prove by this means that a given starting point is periodic. 
But for the special case of A = 4, we actually have an analytical solution.
The best way to describe this solution is to give an example. What is the
value of x = 0.1 after 7 iterations?

Step 1: take the square root of x and calculate the angle θ1 whose sin
is root x. In this case  θ1 = 18.435°.

Step 2: multiply this angle by 2n.  θ2 = 2359.7°.
Step 3: take the sin of this angle and square it. x7 = 0.11334
If you want a formula, this is it:

xn = sin 2
(2n sin−1

√(x0))

To see why this formula works, see the panel opposite.
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Consider the following facts:

sin (2θ) = 2sinθ cosθ
sin 2

(2θ) = 4 sin2
θ cos2

θ

sin2(2 θ) = 4sin 2θ (1 − sin 2θ)
x2 = 4 x1(1 − x1)

where  x1 = sin2
θ

and      x2 = sin2 2θ

Remarkably we see the logistic equation (with A = 4)
emerging naturally from a simple substitution for x.
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Stretching and Folding
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Notwithstanding the fact that we actually have a formula for the nth 
iterate of any starting value, it is still correct to say that every value is 
chaotic – even those values which are periodic! 'Chaotic' does not mean 
'unpredictable'. The defining characteristic of chaos is not 
unpredictability but extreme sensitivity to initial conditions. Take for 
example, the starting value x = 0.25. The orbit of this value is:

0.25 → 0.75 → 0.75 → ...

and every term thereafter is 0.75.

Now if we calculate the orbit of 0.250001, we find that after only 20
iterations, we are all over the place. The reason is simple. If  x = 0.25,
the  angle   θ1 =  30°  whereas  if  x = -.250001,  θ1 =  30.000066°.  The
difference is a miniscule 0.000066°. But when we multiply this angle by
220 this  difference becomes big enough to throw the calculations  out
completely.

The clue is in the fact that the number of iterations n appears as an
exponent  in  the  formula  and  is  why  the  discrepancy  increases
exponentially. It is easy to show that in this case the Lyapunov exponent
is equal to log(2) = 0.693.

It is also clear that if θ1 is any rational fraction of a circle, there will
always (?) be a value of n which makes θ2 = θ1. For example, if θ1 = 1/9
then after 6 iterations θ2 = 26 × 1/9 = 64/9 = 7 + 1/9 = 1/9.

Another way of looking at the process is to imagine that the numbers
from 0 – 1 are stretched to double their length and then folded back on
themselves.  When  this  process  is  done  repeatedly,  the  result  is  a
structure like flaky pastry with numbers originally close together now
far apart and vice versa.

Now the logistic equation uses a smooth quadratic function to do the
stretching and folding but we can investigate an even simpler system in
which the stretching in linear. The function we need is called the tent
function shown opposite with its chaos graph..
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There are no 'islands of stability' because nowhere does the function
have zero gradient  so chaos reigns  supreme.  At the limit  (A = 4) we
have the simple formula6

xn = residue (2n x0)

whose behaviour is most easily seen if we write x0 in binary.
Multiplying a binary number by 2n is equivalent to shifting the binary

number n places to the left so if x0 = 0.011010100111, say, than after 5
iterations we will  reach   1101.0100111 whose residue is  0.0100111.
Now  it  is  immediately  obvious  that  any  rational  value  of  x0 will
eventually either reach 0 (when the binary number has run out of digits)
or enter a periodic cycle (when the binary representation repeats). Also
it is clear that if x0 is irrational, then the orbit will never ever repeat.

This example should finally dispel the idea that there is any 'magic'
in  chaos.  Whatever  function  you  choose  to  iterate,  the  orbit  of  a
particular staring value is completely encoded in the value itself. If you
start with a simple number, the orbit will be simple; but if you start with
a complicated number, the orbit will be complicated too.

© J Oliver Linton
Carr Bank, May 2018

6 Actually this formula is appropriate to a slightly different function, the 'sawtooth' 
function but the principle remains the same
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Most of the illustrations in this book were generated using

a program called 'Chaos Explorer' written by the author and

available on his website: www.jolinton.co.uk.
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