
Paradoxes in Probability

The paradox of Mrs Smith's children

Mrs Smith has two children and (at least) one of them is a girl. What is the probability that the 
other child is a boy or a girl? The surprising answer is that the other child is twice as likely to be a 
boy as it is to be a girl.

How can that be? I hear you ask. Surely the other child is equally likely to be a boy or a girl. 
How can it be twice as likely to be a boy? Just knowing that one of the children is female tells us 
absolutely nothing about the other one.

The argument is persuasive, I know, but it is not correct all the same. The correct argument goes 
like this: there are four equally likely possibilities concerning  Mrs Smith's children listed in the 
table below:

Elder child Younger child

Boy Boy

Boy Girl

Girl Boy

Girl Girl
[1]

Since we are told that (at least) one of them is a girl we can rule out option 1 (Boy, Boy) leaving 
three equally likely options. Of these three options, 2 consist of one boy and one girl; only 1 option 
has both girls. The probability of the other child being a boy is therefore twice as likely as it being a
girl.

Many people find this argument difficult to accept but I assure you, it is correct. The probability 
of the other child being a boy is 2/3 while the probability that it is a girl is 1/3.

Just to make things even more puzzling, suppose you are told that Mrs Smith has two children 
and the elder one is a girl. What then? The table now looks like this:

Elder child Younger child

Boy Boy

Boy Girl

Girl Boy

Girl Girl
[2]

We have had to rule out two of the four options and now we can see that the probability of the 
other child being a boy is equal to the probability that it is a girl: 1/2 each.

But this sounds crazy. How is it that being told that the elder child is a girl makes a difference to 
the probability of the other one is a boy? It doesn't seem to make sense.

Try these two statements:

A) Mrs Smith has two children and (at least) one of them is a red-headed girl.
B) Mrs Smith has two children and the red-headed one is a girl.

Statement A is basically the same as the original statement. The fact that the girl mentioned has 
red hair is irrelevant to the argument and the probability that the other one is a boy is 2/3 not 1/2.



Statement B allows us to distinguish the two children because we infer that only one of them has 
red hair. We can therefore draw up the table as follows:

Red child Fair child

Boy Boy

Boy Girl

Girl Boy

Girl Girl
[3]

and we can see that the probability that the other one is a boy is 1/2.

The crucial difference is that in the second case, the property of having red hair allows us to 
distinguish the two children unambiguously whereas this is not the case with the first statement.  If 
you saw in the distance Mrs Smith with a red headed child, statement B would allow you to infer 
with certainty that the child was a girl. If all you knew was that one of her children was red headed, 
however, you would not be able to deduce this because it is perfectly possible that both children 
were red headed.  

This apparent paradox is an example of what is called Bayesian or conditional probability and 
concerns the task of determining the probability of a certain outcome X given a certain condition C.
In the original scenario we are asked to determine the probability that the other child is a boy (or 
girl) given that one of the children is a girl.

Bayes' Theorem

Bayes' theorem states that the probability of X given C is equal to the a priori probability of X 
and C divided by the a priori probability of C on its own. In symbols

p (X | C) =
p(X & C)

p(C)
(1)

Lets calculate the probability that Mrs Smith's other child is a boy. First we must define X and C 
very carefully.

X : the other child is a boy
C : one of the children is a girl.

Now p(X & C) is the a priori probability that one child is a girl and the other child is a boy. By 
a priori we mean 'from first principles' i.e. without any other conditions. Since there are four 
equally likely possibilities and of these, two have one boy and one girl, this probability is1/2.

p(C) is the a priori probability that (at least) one of the children is a girl. We know that the 
probability of this outcome is 3/4.

Applying Bayes' theorem we find that   p(X | C), the probability that the other child is a boy 
given that one child is a girl is1/2 over 3/4 = 2/3.

To make absolutely sure that the theorem works, lets calculate the probability that the other child
is a boy given that the red-headed child is a girl.

X : the other child is a boy
C : the red-headed child is a girl.

p(X & C) = 1/4 (of the four possibilities, there is only one which has a red headed girl and a fair 
boy – see table [3])

p(C) = 1/2 
 p(X | C) = 1/4 over 1/2 = 1/2.



You can see how vital it is to specify exactly what X and C are and how careful you must be to 
calculate the two a priori probabilities.

Wednesday's child

We are not finished with this puzzle yet. Suppose you are now told that Mrs Smith has two 
children and that (at least) one of them is a girl born on Wednesday. What is the probability now 
that the other child is a boy?

Now if you have followed the arguments so far and are prepared to accept them you will 
probably want to say the fact that the child was born on Wednesday is no more relevant than the fact
that she is red headed and makes no difference to the probabilities. All we really know is that Mrs 
Smith has two children and that at least one of them is a girl and under these circumstances the 
probability that the other child is a boy is 2/3.

Amazingly this is not correct. Even more surprising, the correct answer is not even 1/2 – it is 
somewhere in between. To see why we need to set out all the equally likely possibilities. It turns out
that there are rather a lot of them – 196 in fact. (See table [4]).

I have highlighted those potential families which contain (at least.) one girl born on a 
Wednesday. There are 27 of them, of which 14 consist of a girl and a boy. These are indicated in 
yellow. The correct answer to the puzzle is therefore 14/27.

Let's see if Bayes theorem gives the same answer and if it throws any more light on the puzzle.

X : the other child is a boy
C : one of the children is a girl born on a Wednesday

Now the probability that a family of two contains a girl born on a Wednesday is not equal to the 
probability that the family contains a girl (3/4) multiplied by the probability that a given child is 
born on a Wednesday (1/7). This would be 3/28 or 21/196. Looking again at the table we have seen 
that the odds are slightly greater than this – 27/196. The reason for this is that, contrary to what you 
might expect, the two factors are not actually independent. When you expand the table [1] by 7, the 
number of possibilities in the BG and GB blocks increase by 7 but the number of possibilities in the
GG block increase to 13. A litte more thought will convince you that if there had been 8 days in a 
week or n days, the total number of possibilities would increase to n + n + n + (n – 1) = 4n – 1, of 
which 2n would be families in which the other child is a boy. This gives us:

 p(X & C) = 2n / 4n2

p(C) = (4n – 1) / 4n2

 p(X | C) = 2n / (4n – 1)

This formula gives us a nice way of interpreting the situation. n is the reciprocal of the a priori 
probability of the extra condition. In the case of Wednesday's child, n = 7 and   p(X | C) = 14/27.

If there is no extra condition (or, if you like, the extra condition is a certainty) then n = 1 and  
p(X | C) = 2/3.

The greater the unlikelihood of the extra condition, the nearer the probability approaches 1/2. For
example, if we knowe that Mrs Smith's girl was born on Christmas day, the probability of the other 
child being a boy would be 2× 365 / (4 × 365 – 1) = 730 / 1459 = 0.50034. Indeed, we were wrong 
about the red headed girl. Since only about 1 in 20 people are red headed, the correct answer to this 
problem should have been  2× 20 / (4 × 20 – 1) = 40 / 79 = 0.506.

To summarise what we have learnt we can say that the more the extra condition serves to 
distinguish the two children, the closer the probability that the other child is a boy approaches 1/2.



BM BM BT BM BW BM BT BM BF BM BS BM BS BM

BM BT BT BT BW BT BT BT BF BT BS BT BS BT

BM BW BT BW BW BW BT BW BF BW BS BW BS BW

BM BT BT BT BW BT BT BT BF BT BS BT BS BT

BM BF BT BF BW BF BT BF BF BF BS BF BS BF

BM BS BT BS BW BS BT BS BF BS BS BS BS BS

BM BS BT BS BW BS BT BS BF BS BS BS BS BS

BM GM BT GM BW GM BT GM BF GM BS GM BS GM

BM GT BT GT BW GT BT GT BF GT BS GT BS GT

BM GW BT GW BW GW BT GW BF GW BS GW BS GW

BM GT BT GT BW GT BT GT BF GT BS GT BS GT

BM GF BT GF BW GF BT GF BF GF BS GF BS GF

BM GS BT GS BW GS BT GS BF GS BS GS BS GS

BM GS BT GS BW GS BT GS BF GS BS GS BS GS

GM BM GT BM GW BM GT BM GF BM GS BM GS BM

GM BT GT BT GW BT GT BT GF BT GS BT GS BT

GM BW GT BW GW BW GT BW GF BW GS BW GS BW

GM BT GT BT GW BT GT BT GF BT GS BT GS BT

GM BF GT BF GW BF GT BF GF BF GS BF GS BF

GM BS GT BS GW BS GT BS GF BS GS BS GS BS

GM BS GT BS GW BS GT BS GF BS GS BS GS BS

GM GM GT GM GW GM GT GM GF GM GS GM GS GM

GM GT GT GT GW GT GT GT GF GT GS GT GS GT

GM GW GT GW GW GW GT GW GF GW GS GW GS GW

GM GT GT GT GW GT GT GT GF GT GS GT GS GT

GM GF GT GF GW GF GT GF GF GF GS GF GS GF

GM GS GT GS GW GS GT GS GF GS GS GS GS GS

GM GS GT GS GW GS GT GS GF GS GS GS GS GS

[4]



The paradox at last

You may be surprised to learn that we still haven't got to the real paradox yet! Here is the 
absolute cruncher.

Mrs Smith tells you that she has two children and shows you a photograph of her on holiday 
beside the seaside with one of her children. The child is a girl. What is the probability that the other 
child is a boy?

Is this the same as saying that (at least) one of the children is a girl – in which case that answer is
that the probability of the other child being a boy is 2/3.

Or is saying that 'the child in the photograph is a girl' is like saying that 'the elder child is a girl' 
or 'the red-headed child is a girl' – in which case the probability is 1/2. Does the fact that there is 
only one child in the photograph distinguish the two children uniquely in the same way that being 
the elder or being red-headed differentiates them?

Let us see if Bayes' theorem can help resolve the issue. First the definitions:

X : the child not shown in the photograph is a boy
C : the child in the photograph is a girl

This is a surprisingly difficult problem, Take statement C. We want to know what is the a priori 
probability that the child in the photograph is a girl. Obviously it is the case that before you see the 
photograph there is an equal chance that it is either a boy or a girl and that there is an equal chance 
that the child not in the photo is a boy or a girl. Mathematically p(X & C) = 1/4; p(C) = 1/2 so the 
probability that the child not in the photo is a boy is 1/4 over 1/2 = 1/2.

But as soon as you look at the photo and see that the child in the photo is a girl, the situation 
changes. You now know something that you didn't know before; namely that at least one of Mrs 
Smith's children is a girl and we have seen that with this knowledge, the probability that the other 
child is a boy is 2/3, not 1/2.

But this sounds very odd. The factor of 3 which appears in the figure of 2/3 comes about mainly 
because p(C) = 3/4. (You will recall that in 3 out of the 4 equally likely situations one of Mrs 
Smith's children is a girl). So what we are, in effect assuming is that, as soon as you see the photo, 
the a priori probability that the child in the photo is a girl becomes 3/4. But this is ridiculous. As 
soon as you see the photo you know that the child in the photo is a girl! In other words p(C) is not 
3/4 it is 1 and the probability that the child not in the photo is a boy reverts to being 1/2 again.

My interpretation of the paradox is therefore as follows: as soon as you see the photo you not 
only know that at least one of Mrs Smith's children is a girl, you also know that the child she took to
the seaside and was photographed is a girl. This extra information serves to distinguish the two 
children uniquely (in effect n = ∞). The calculation is different but the result is the same. The 
probability that the child not in the photograph is a boy is still 1/2. I suspect, however, that the 
debate will continue!

Usually, obtaining extra knowledge about a situation alters the probabilities but this is not always
true as my next example shows.



The Monty Hall paradox

In the American TV game show 'Let's make a deal' hosted by Monty Hall the winning contestant 
was given the opportunity to win a car by choosing one of three closed doors. Behind one door 
lurked the car and a goat behind each of the other two. After choosing one door the host would open
one of the other doors to reveal a goat. (Of course the host knows which door the car is behind so 
there is always at least one door he can open.) The contestant is given the choice of either sticking 
with his original guess or switching to the other remaining closed door. What should he do?

Most people would argue that, once the host has opened the door revealing the goat, there is an 
equal chance of the car being behind either of the two remaining doors so there is no advantage in 
switching your choice but this is false. It turns out that you can double your chances of winning by 
switching to the other door.

One way of arguing correctly is to say that, initially the probability of the car being behind the 
door you chose first is 1/3 and that the probability of it being behind one of the other doors is 
therefore 2/3. When the host opens one of these doors revealing the goat, he is, in fact giving you 
extra information about what is behind these doors. The chances of the car being behind the chosen 
door  remain at 1/3 so the chances of the car being behind the door that the host did not open must 
be 2/3. It is therefore better to switch doors. It has to be admitted that the majority of people 
including many university professors do not think this argument has greater force than the first so 
lets see how Bayes' theorem gets the right answer.

Let us call the door which the contestant chooses first door A and the other two doors B and C. 
We shall calculate the probability that the car is behind one of the other doors given that the host 
has revealed a goat behind one of them. We therefore have

X : the car is behind one of the other doors B or C
C : either the car is not behind door B or it is not behind door C

Note carefully what the condition is. The host has opened one of the doors to reveal a goat. But 
there is always one door which the host can open so condition C is always satisfied. This means that

p(C) = 1

But if p(C) = 1 then p(X & C) = p(X). (the probability of X and a certainty is simply the 
probability of X) so

p(X & C) = 2/3

 p(X | C) = 2/3 over 1 = 2/3. 

So when the host opens one of the doors, the probabilities do not change because he only tells us
what we knew already (that one of the doors B and C conceals a goat). It remains true that the 
probability that the car is behind the chosen door is 1/3 and the probability that it is behind one of 
the other doors is still 2/3. He does, however, give the contestant further information on the basis of 
which he can make a better choice.

The Three Card Trick

You have three cards: card A is white on both sides; card B is black on both sides; card C is black
on one side and white on the other. While your back is turned your friend chooses one of the cards 
at random and places it on the table. When you turn round you see that the upper surface of the card
is black. What is the chance that the other side of the card is black too?

One's immediate reaction is that the whole system is symmetrical with respect to black and 
white. There are exactly the same number of black sides as white sides and the fact that you can see 
a black side can't make any difference to the colour of the other side so it must be equally likely that



the other side of the card is black or white. But is this correct? It sounds suspiciously like the 
paradox of Mrs Smith's children.

Let's use Bayes Theorem to calculate the answer.

X: The other side of the card on the table is black
C: The upper side of the card on the table is black 

p(X & C) is the probability that both sides of the card on the table are black. Since only one card
out of the three satisfies this condition, this probability = 1/3.

p(C) is the a priori condition that the upper face of the card on the table is black. Now there are
6 equally likely possibilities concerning the way the card is dealt of which 3 show a black face. This
probability is therefore 1/2.

p(X | C) = 1/3 over 1/2 = 2/3.

The situation is indeed very like that paradox of Mrs Smith's children.

The Faulty Cancer Screening Test

Women are regularly screened for breast cancer but in any one test the probability of a false
positive  (i.e.  a  positive  indication  of  cancer  when  there  is,  in  fact  none)  is  around  5%.  The
probability of missing a genuine cancer (a false negative) is around 10%. In addition, approximately
0.5% of women tested actually have cancer. Given these figures, two important questions present
themselves – specifically

a)   Given that the test result was positive, what is the chance that the subject has cancer?
b)   Given that the test result was negative, what is the chance that the subject has cancer?

It would seem reasonable to conclude that, because 5% of positive results are faulty, if a woman
is tested positive there is a 95% chance of her having cancer. Likewise, if she tests negative there is
still a 10% chance of her having the disease because 10% of the negative results are faulty. But are
these conclusions correct?

Suppose we test 100 women. On average 0.5 of these women will actually have cancer and 99.5
will not

Of the 0.5 women who have cancer, 90% (on average 0.45) will test positive and 10% (0.05) will
test negative.

Of the 99.5 women who do not have cancer, 5% (i.e.4.975) will test positive and 95% (94.525)
will test negative

We can summarise these results in a table.

Test positive Test negative Totals

Have cancer 0.45 0.05 0.5

Do not have cancer 4.975 94.525 99.5

Totals 5.425 94.575 100
Now, taking the first question:

X: The subject has cancer
C: The test result was positive

 p(X & C) is the a priori probability that the subject has cancer and that the test was positive. A
glance at the above figures shows that out of the 100 women tested, 0.45 both have cancer and test
positive so  p(X & C) = 0.0045

p(C) is the a priori probability that the test result is positive. We can see from the table that the



total number of positive test results we can expect is 5.425.  p(C) is therefore equal to 0.05425

p(X | C) = 0.0045 / 0.05425 = 0.083 or 8.3%

This is an awful lot smaller than our original guess of 95%! Why is this? Looking at the figures it
is clear that most of the positive test results are due due to the number of false positives which in
turn is due to the fact that the great majority of women tested do not actually have cancer. A positive
test result should not therefore be taken as any sort of indication that the subject actually has cancer
–  only a recommendation that further tests are required.

What about the second question? If anything the situation is even worse here.

X: The subject has cancer
C: The test result was negative

p(X & C) is the a priori probability that the subject has cancer and that the test was negative.
Out of 0.5 women who actually have cancer only 0.05 will test negative so p(X & C) = 0.0005

p(C) is the a priori probability that the test result is negative. There are 94.575 negative results
per 100 women so p(C) = 0.94575

This means that p(X | C) = 0.0005 / 0.94575 = 0.00053 or approximately 0.05%

The argument that since 10% of the negative results are faulty, a women who has a negative
result still  has a 10% chance of the disease is catastrophically wrong (and yet a woman with a
negative result who has innocently asked the question 'what is the chance that the test result is
wrong?' may still go home with completely the wrong impression).

Before she had the test the chance of her having cancer was 0.5%. After the test, her chances of
having cancer are 10 times smaller. She should go home well pleased.

The prosecutor's fallacy

(This  fallacy  is  discussed  in  greater  mathematical  detail  in  another  of  my  articles:  'Bayes
Theorem and the Prosecutor's Fallacy')

DNA evidence is frequently used in rape cases to prove that the defendant is guilty on the basis
that his DNA matches that of DNA recovered from the semen found on the victim.

Now consider the following two statements:1

A1:   “The probability of a match if the semen came from another person is one in a 
billion.”

therefore

B1:   “The probability that the semen came from another person is one in a billion.”

Statement A1 is simply a statement about the reliability of DNA matching and reflects the fact
that it  is extremely unlikely (but not impossible) that the DNA from two unrelated people will
match.

Statement  B1 is  something entirely different.  It  asserts  that  it  is  extremely unlikely that  the
semen  collected  from  the  victim  came  from  someone  other  than  the  defendant  and  that  the
defendant is very unlikely to be innocent.

And yet surely statement B1 follows from statement A1, doesn't it? After all, the two statements
only differ in a few unimportant words, don't they?

Again, the error here is monumental and could have tragic consequences.

Let's consider two statement describing a rather less emotive situation.

1 Taken from 'A Guide to DNA' published by the Forensic Science Service



A2:   “The probability of being colour blind if you are male is about 8%”

therefore

B2:   “The probability that a certain colour blind person is male is about 8%”

Few people will be taken in by this. Just because approximately 8% of males are colour blind, it
makes no sense to infer that the probability of a colour blind person being male is 8% because the
argument takes no account of the incidence of colour blindness in the female population.

But consider the following argument:

A3:   “The probability of being colour blind if you are female is about 0.5%”

therefore

B3:   “The probability that a certain colour blind person is female is about 0.5%”

Do you think you could be persuaded by this? Why does it sound more likely than the argument
about colour blind males? The best that can be said of it is that the result sounds at least plausible –
any given colour blind person is, indeed, more likely to be male than female – but lets work out the
exact value using Bayes Theorem. We have the following statements

X: The person is female
C: The person ins colour blind

Now we know from statement A3 that p(C | X) i.e. the probability that you are colour blind if
you are female, is 0.005 (or 0.5%).

What we really want to know is p(X | C) – the probability that the person is female given that
they are colour blind. In other words, we want to switch round X and C. A little algebra is needed
here:

p (X | C) = p
(X & C)

p(C )

p (C | X) = p
(X & C)

p (X )
p (X | C)

p (C | X)
=

p (X)

p (C)

p (X | C) = p (C | X) ×
p (X)

p (C) (2)

In order to do the calculation, therefore, we need to know p(X) and p(C).

p(X) is easy. This is the a priori probability that the person is female. Obviously this is 0.5.

p(C), the a priori probability that the person is colour blind is a bit more difficult but we can do
it in two stages. First, we know from statement  A3 that  p(C | X) = 0.005. We also know from
statement A2 that  p(C | notX) = 0.08. (p(C | notX) is the probability the you are colour blind if you
are not female – i.e. male)

Now there is an important identity which is not difficult to prove which enables us to calculate
p(C) from these figures, namely:

p (C) = p (C | X) × p(X ) + p (C | notX) × p(notX)

(All  we are  saying  here  is  that  the  probability  of  something happening (C)  is  equal  to  the
probability of (C) given (X) plus the probability of (C) given (notX))

Putting in the numbers that we know, p(C) = 0.005 × 0.5 + 0.08 × 0.5 =  0.0425. We are now in a
position to calculate the answer:

p (X | C) = 0.005 ×
0.5

0.0425
= 0.0588    or   5.88%



How does this  calculation apply to the rape case? Statement  A1 tells  us that  given that the
subject is innocent there is a one in a million chance of a match between the samples. This allows us
to identify X and C

X: The subject is innocent
C: The DNA samples match

and that p(C | X) = 1/1,000,000,000. This is a rather small number so lets call this figure pmatch for
short.  

We want to know p(X | C) using equation (2).

p(X) is the a priori probability that the subject is innocent. Now if other evidence resatricts the
number of possible suspects to a certain group with  N mambers, then the probability that he is
innocent is (1 – 1/N)

To calculate p(C) we need to know  p(C | notX) i.e. the probability that the DNA samples match
given that the subject is guilty. We can safely assume that this is a certainty.

p(C) = p(C | X) × p(X) + p(C | notX ) × p(notX)
p(C) = pmatch × (1 − 1 / N ) + 1 × (1 /N )

p(X | C) = p(C | X) ×
p(X )

p(C )

p(X | C) = pmatch ×
pmatch × (1 − 1 / N )

pmatch × (1 − 1/ N ) + 1 × (1 / N )

p(X | C) =
pmatch × ( N − 1)

pmatch(N−1) + 1

Now since N is a large number, we can put (N – 1) equal to N so this simplifies to:

p (X | C) =
pmatch × N

pmatch × N + 1

The crucial feature of this result is to note the relative sizes of pmatch × N and 1. If N is so large
than  pmatch × N  is greater than 1, then the fraction tends to 1 – i.e. the subject is very probably
innocent; but if we can restrict the number of possible subjects to less than a few million, say the
population of New York, then the denominator is virtually equal to 1 and the formula becomes
simpler still:

p(X | C) = pmatch × N

If, in order to secure a conviction, we need to establish a probability of less than 1 in a million, 
then with pmatch equal to 1 in a billion, N must be less than 1000. DNA evidence is useless on its 
own, but if other evidence can reduce the number of possible suspects to less than 1000 individuals 
then the DNA evidence can be crucial. 
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